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Abstract 

Two-dimensional electron (2DES) and hole (2DHS) systems have attracted intense 

research attentions in past decades. A 2DES or 2DHS modulated by one-dimensional or 

two-dimensional spatially periodic potential shows particular importance because the 

existence of modulation provides a tunable parameter for exploring interaction between 

electrons and scattering centers presenting on the two-dimensional systems. This thesis 

documents a systematic experimental study, in collaboration with Bell Labs, of electronic 

transport in very-high mobility 2DES and 2DHS in GaAs/AlGaAs quantum structures. 

Fabrication of triangular antidot lattice in 2DES, as well as low-temperature transport and 

photoconductivity properties in spatially modulated 2DES, has been studied. Strong 

Geometric resonance (GR), up to seven peaks resolved, is observed in the longitudinal 

magnetoresistance because of high mobility of 2DES after fabrication of antidot lattice. 

Photoresistance shows clear millimeterwave-induced resistance oscillations (MIRO) but 

with heavily damping amplitudes, and magnetoplasmon resonance (MPR) is also 

observed as well. GR, MIRO and MPR are decoupled from each other in our modulated 

2DES. These experimental findings pave the way for studies of nonlinear transport in 

modulated 2DES. Magnetotransport measurements on a new material, the Carbon δ-

doped 2DHG in GaAs/AlGaAs quantum well, indicate that the 2DHG has a transport 

scattering time compatible with those in very-high mobility 2DES. However, 

photoresistance measurement shows much weaker MIRO in the 2DHS than that in 2DES 

with compatible transport scattering time. Low-temperature transport measurements on 

Landau, Zeeman, and spin-orbital parameters imply that the C-doped 2DHS has small 

zero field spin splitting and large effective g-factor. As part of the thesis work, the thesis 
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also presents a development of low-temperature/high magnetic field (300mK/12T) 

scanning Hall probe microscope (SHPM) technique for measuring small local magnetic 

fields at low temperature and an algorithm for calculating the current density from 

measured magnetic fields based on Fourier transformation technique. Integration of 

SHPM and the algorithm provides a practical tool for imaging the current distribution and 

a powerful method to explore electronic transport properties of 2DES and 2DHS. 
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Chapter One Introduction 

In past decades, extensive researches on magneto-transport were done on Two 

Dimensional Electron Gas (2DEG). Following the most important discoveries of the 

Integer Quantum Hall Effect (IQHE) by K. von Klitzing, G. Dorda and M. Pepper in 

1980 [1], and the Fractional Quantum Hall Effect (FQHE) by D. C. Tsui, H. L. Stormer 

and A. C. Gossard in 1982 [2], many new interesting phenomena were observed in 

2DEG, see Ref. 3. This thesis will focus on magnetotransport in the low magnetic field 

regime, where novel effects have been reported, including Geometric Resonance (GR) 

[4-7], Microwave Induced Resistance Oscillations (MIRO) [8, 9] and microwave induced 

Zero-Resistance State (ZRS) [10, 11] or Zero-Conductance State (ZCS) [12].  

Under one-dimensional [4-6] or two dimensional [7] spatially periodic modulation, 

magnetoresistance in 2DEG showed Geometric Resonance (GR) when commensurability 

occurs between two length scales, period of modulation, a, and diameter of cyclotron 

orbit, 2ܴ. More details of GR will be covered in section 2.6. The presence of spatially 

periodic modulation breaks the translational symmetry of the 2DEG system. If the 2DEG 

is clean enough after introduction of modulation, it will be an appropriate system for 

studies of photoresistance with finite momentum transfer Δݍ ൌ  under break of ܽ/ߨ2

translational symmetry.  

Under microwave irradiation, a new type of oscillations, named MIRO, was observed 

in an ultraclean 2DEG [8,9] and in higher mobility 2DEG under sufficiently strong 

microwave irradiation, MIRO develops into Zero-Resistance State (ZRS) [10,11] or 

Zero-Conductance State (ZCS) [12]. It is believed that the MIRO arises from transitions 
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between multiply of Landau Levels (LLs) excited by short-range scattering, while the 

microscopic origin of MIRO and ZRS still remain unknown. More details of MIRO and 

ZRS will be presented in section 2.7. In our experiments, we explored MIRO and ZRS in 

a 2DEG patterned 2D modulation, triangular antidot lattice [13]. The experimental result 

of influence of 2D modulation on MIRO will be reported in this thesis. It was found that 

the presence of 2D modulation had little effect on MIRO, and GR and MIRO are 

decoupled, while ZRS was damped out due to a fourfold drop of mobility of 2DEG.  

It is suggested [14] that current distribution of ZRS is the key to address its exact 

microscopic origin. Therefore imaging of current distribution will be a straightforward 

way to settle the issue. In this thesis, a development of low temperature Scanning Hall 

Probe Microscope (SHPM) technique will be presented. With this low temperature 

SHPM, imaging current distribution of ZRS is proposed. 

At the same time, the two-dimensional hole gas (2DHG) has also attracted much 

research attentions because of its unique charge and spin properties derived from valence 

band structure. Extensive experiments have been performed on 2DHG to reproduce 

observed effects on 2DEG. IQHE and FQHE were successfully observed on 2DHG [15, 

16]. However, MIRO on 2DHG is much weaker than on 2DEG [17], and ZRS is totally 

absent on 2DHG, even the 2DHG has the comparable scattering time with 2DEG. This 

discrepancy implies that further understanding of properties of 2DHG and the mechanism 

of ZRS are needed. In this thesis, I will present an investigation of magnetotransport on 

2DHG, including measurement of effective mass and g-factor of a 2DHG in 

GaAs/AlGaAs quantum well, and observation of GR and MIRO in 2DHG. 
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This thesis is organized in five parts. First, related background of magneto-transport 

will be reviewed in Chapter two. Then in Chapter three, magneto-transport in 2DEG 

patterned triangular antidot lattice is presented.  In Chapter four, I will present the results 

of magnetotransport in Two Dimensional Hole Gas (2DHG) in a Carbon δ-doped 

GaAs/AlGaAs quantum well. A development of Scanning Hall Probe Microscope 

(SHPM) technique to image current distribution will be introduced in Chapter five. 

Finally, conclusion will be given on Chapter six. 
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Chapter Two Background of Magneto-Transport 

2.1. Formation of high mobility 2DEG   

High mobility 2DEG can be realized at the interface of two semiconductors with 

modulation-doping. The most popular pair of semiconductors is GaAs and AlxGa1-xAs.  

By changing x, the ratio of component Al, lattice constant of AlxGa1-xAs can be adjusted 

to match that of GaAs to make the interface defect free. It was reported that the quality of 

2DEG is mainly influenced by three factors [18]: scattering from ions in doped layer, 

interface roughness, and impurities in 2DEG. A smooth interface can significantly 

improve the quality of 2DEG. And with Molecular Beam Epitaxy (MBE) technique, 

impurities in the 2DEG can be controlled at very low level so that they will not be a 

dominant factor on determining quality of 2DEG. Actually in most samples used in our 

experiments, scattering from ions in the doped layer is the dominant factor influencing 

quality of 2DEG. The typical GaAs/AlxGa1-xAs heterostructure is shown in Fig. 2.1. 

2.2. 2DEG under magnetic field 

Electron motion under magnetic field is well known text book knowledge. Here I will 

give a brief review of it. For more details, please check Ref. 19. Let’s consider an 

electron in 2DEG under a magnetic field B applied in the z direction, perpendicular to the 

2DEG, i.e., B = (0, 0, B) and using  the Landau gauge, we have the vector potential A = 

(0, B x, 0). Then the Schrödinger equation of the electron in 2DEG has form: 

1
2݉ ௫ൣ

ଶ  ሺ௬ െ ,ݔሻଶ൧Ψሺݔܤ݁ ሻݕ ൌ ,ݔΨሺߝ  ሻ                               ሺ2.1ሻݕ

where ݉ ൌ   is mass of electron in 2DEG, m* is the effective mass of electron and݉כ݉
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me is bare electron mass. As the Hamiltonian ܪ ൌ ଵ
ଶ

௫ൣ
ଶ  ሺ௬ െ  ሻଶ൧ is yݔܤ݁

independent and the wave functions can be written as: 

Ψሺݔ, ሻݕ ൌ ݁௬ݑሺݔሻ                                                        ሺ2.2ሻ 

where ky is wave vector on y direction. Substitute Eq. (2.2) into (2.1), it is easy to attain 

equation for ݑሺݔሻ with ௫ ൌ ݅ డ
డ௫

 and ௬ ൌ ݅ డ
డ௬

: 

Fig. 0.1 Diagrams of typical GaAs/ AlxGa1-xAs heterostructure. 
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െ
ଶ

2݉
݀ଶ

ଶݔ݀ 
1
2 ݉߱

ଶ ቆݔ െ
݇௬

ܤ݁ ቇ
ଶ

൩ ሻݔሺݑ ൌ  ሻ                          ሺ2.3ሻݔሺݑߝ

where ߱ ൌ -is cyclotron frequency.  Eq. (2.3) is the Schrödinger equation for one ݉/ܤ݁

dimensional harmonic oscillator which has solution: 

ሻݔሺݑ ൌ ߶ሺݔ െ ܺሻ ൌ ቆ
1

2݊! ݈ߨ√
ቇ

ଵ/ଶ

ݔ݁ ቈെ
ሺݔ െ ܺሻଶ

݈
ଶ  ିଵܪ ቆ

ݔ െ ܺ

݈
ଶ ቇ           ሺ2.4ሻ 

where n = 1, 2, …is an integer, ܺ ؠ ݇௬ ሺ݁ܤሻ⁄ ൌ ݈
ଶ ݇௬ is the center of the cyclotron 

orbit, ݈ ؠ ඥ ሺ݁ܤሻ⁄ ൌ ඥ ሺ݉߱ሻ⁄  is magnetic length, and Hn (x) are the Hermite 

polynomials. Therefore we can now attain the solutions of the wave functions and 

energies for electron motion in 2DEG:   

Ψሺݔ, ሻݕ ൌ ߶ሺݔ െ ܺሻ exp൫݅݇௬ݕ൯                                          ሺ2.5ሻ 

ߝ ൌ ൬݊ െ
1
2൰ ߱                                                              ሺ2.6ሻ 

These solutions have several important features.  

The first one is that the probability density |Ψሺݔ,  ሻ|ଶ is independent on y so that theݕ

density is consisted of parallel strips in the y direction, which are equally spaced along x 

direction.  From Eq. (2.4), it is obvious that the width of the strip is in the order of  ݈. 

The separation between adjacent strips is given by distance between two adjacent centers 

of cyclotron orbits, Δܺ. If sample has dimensions of ܮ௫ ൈ  ௬, then with periodicܮ

boundary condition, we have ݇௬ ൌ ݆ሺ2ܮ/ߨ௬ሻ with j an integer. The separation is given by  

Δܺ ൌ ݈
ଶ Δ݇௬ ൌ ݈ߨ2

ଶ ௬. At B = 1 T , ݈ܮ/ ൎ 26݊݉, which usually is much smaller than 

2DEG sample size, Ly ; hence we have Δܺ ا ݈. There is no gap between two adjacent 

density strips. And this distinction of between x and y directions shall result from the 
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gauge chosen for vector potential. It’s the Landau gauge, A = (0, B x, 0) which we can see 

obvious distinction between x and y directions.  

 

The second property is that electrons in 2DEG under magnetic field have a discrete 

energy spectrum given by Eq. (2.6). The energy level, so-called Landau level, only 

depends on index n and the spacing between two adjacent energy level is constant at 

fixed magnetic field, equal to ߱. All states with different ky but same n are degenerate. 

The density of states collapses from a uniform function below the Fermi energy into a 

series of δ-functions, as shown in Fig. 2.2 (a) and (b).  In a real 2DEG, the electron is 

scattered by other electrons, holes, phonons and impurities. This scattering will broaden 

the Landau level so that density of states can’t be described by δ-functions. A common 

assumption is that the density of states has Gaussian or Lorentzian profile, as shown in 

 

Fig.0.2  Diagrams of density of states of 2DEG without and with magnetic field. (a) density of 

states at B = 0; (b) density of states of Landau levels in ideal condition; (c) and (d) density of 

states of Landau level with level broadening due to scattering. 
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Fig. 2.2 (c) and (d). With a Gaussian or Lorentzian profile, the Landau level will acquire 

a width, Г, which is precisely defined as the full width at half-maximum (FWHM) of 

profile of Landau level. The electron scattering can be characterized by a scattering time, 

or quantum lifetime, τq, which is defined as the typical time span between two scattering 

events. We attain an important relation ߁ ൌ /߬, which clearly indicates the origin of 

Landau level broadening. From Fig. 2.2 (d), it is clear to see that the Landau levels can be 

separated only when ߱  This requirement also can be written as ߱߬ .߁  1 which 

means that electron has to survive long enough without scattering to complete at least one 

cyclotron orbit in order to resolve the Landau levels. 

As the energy of a Landau level only depends on index n, all the states with different 

wave vector ky but same n will be degenerate. To determine the degeneracy of Landau 

level, we need to know the number of states in each Landau level. We suppose the 2DEG 

system has rectangular dimensions ܮ௫ ൈ  ௬. Periodic boundary conditions give conditionܮ

݇௬ ൌ ݆ሺ2ܮ/ߨ௬ሻ with j an integer. Under Landau gauge, the cyclotron orbit center, 

locating at ܺ ൌ ݇௬ ሺ݁ܤሻ ൌ ߨ2݆  ሺ݁ܮܤ௬ሻ⁄⁄ , shall be inside the sample, that is 0 ൏ ܺ ൏

௫. So we have condition 0ܮ ൏ ݆  ௬ܮ௫ܮܤ݁ ݄⁄ . Thus the total number of states in each 

Landau level per unit area is ݊ ൌ  which is the degeneracy of Landau level. In ,݄/ܤ݁

real space, the area occupied by each state in Landau level is given by 1/݊ ൌ ݄/ሺ݁ܤሻ ൌ

݈ߨ2
ଶ . 

From Fig. 2.2 (c) and (d), we can see that when magnetic field increases, separation 

between adjacent Landau levels, ߱, becomes larger. And number of states in each 

Landau level also increases. In a 2DEG sample, the density of electron, ݊ଶ, is constant 
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under magnetic field. Therefore the number of occupied Landau level, named as filling 

factor ν, must decrease. With degeneracy of Landau level, filling factor can be written as: 

ߥ ൌ
݊ଶ

݊
ൌ

݄
ܤ݁ ݊ଶ                                                            ሺ 2.7 ሻ 

Filling factor is usually not an integer, but when Fermi level, EF, lies between two 

separated Landau levels, all Landau levels below EF are full while levels above EF are 

totally empty so that ν = 2n  (spin degeneracy of n), shown in Fig. (c) and (d). 

Under increasing magnetic field, Fermi level will move down to lower Landau level 

and the density of states at EF will be an oscillatory function of filling factor. This 

oscillatory behavior of the density of states at EF results in the well-known Shubnikov-de 

Haas oscillation [19].  

2.3. Transport in 2DEG  

2.3.1. Classical transport in 2DEG 

Consider a 2DEG under static electric field, E = (Ex, Ey ) and magnetic field, B, 

applied on z direction. Given the velocity of electron ࣏ ൌ ሺ߭௫, ߭௬ሻ, Newton’s second law 

of motion gives equations: 

ە
۔

݉ۓ ൬
݀
ݐ݀ 

1
߬௧

൰ ࢞߭ ൌ െ݁൫ܧ௫  ߭௬ܤ൯

݉ ൬
݀
ݐ݀ 

1
߬௧

൰ ߭௬ ൌ െ݁൫ܧ௬ െ ߭௫ܤ൯
                                            ሺ2.8ሻ 

where ߬௧ is the transport lifetime or collision time describing the collisions of electrons 

with impurities, lattice imperfections and phonons. At a steady state, velocity of electrons 

shall not change with time. Thus Eq. (2.8) gives expressions for ߭௫ and ߭௬: 
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ቊ
߭௫ ൌ െߤሺܧ௫ െ ߱߬௧ܧ௬ሻ/ሺ1  ߱

ଶ߬௧
ଶ ሻ

߭௬ ൌ െߤሺ߱߬௧ܧ௫  ௬ሻ/ሺ1ܧ  ߱
ଶ߬௧

ଶ ሻ
                                      ሺ 2.9 ሻ 

where ߤ ൌ ݁߬௧/݉ is mobility. With current density  ൌ െ࣏݁݊ and relation  ൌ   we ,ࡱߪ

attain expressions for conductivity tensor, σ.  

ߪ ൌ ቀ
௫௫ߪ ௫௬ߪ
௬௫ߪ ௬௬ߪ

ቁ ൌ
ߪ

ሺ1  ߱
ଶ߬௧

ଶ ሻ
൬ 1 െ߱߬௧

߱߬௧ 1 ൰                   ሺ 2.10a ሻ 

where ߪ ൌ  is the DC conductivity at zero magnetic field. At high magnetic field ߤ݊݁

when condition ߱߬௧ ب 1 is satisfied, Eq. (2.10a) will become: 

ߪ ൌ
݁݊
ܤ ൬1/ሺܤߤሻ െ1

1 1/ሺܤߤሻ൰                                       ሺ 2.10b ሻ 

Thus the resistivity tensor, ρ, is given by: 

ߩ ൌ ቀ
௫௫ߩ ௫௬ߩ
௬௫ߩ ௬௬ߩ

ቁ ൌ
1

|ߪ| ቀ
௫௫ߪ ௬௫ߪ
௫௬ߪ ௬௬ߪ

ቁ ൌ

ۉ

ۈ
ۇ

1
ߪ

ܤ
݁݊

െ
ܤ
݁݊

1
ߪ ی

ۋ
ۊ

                      ሺ 2.11 ሻ 

The off-diagonal elements of the resistivity tensor give the Hall resistance. 

2.3.2. Quantum transport in 2DHG 

Consider applying a crossed static electric field, E, and magnetic field, B, on an ideal 

2DEG, with the electric field on x direction and magnetic field on z direction. Ideal 

2DEG means only electric potential, e E x, and vector potential exist in the system. Under 

Landau gauge, the Schrödinger equation of the electron in 2DEG is: 

൜
1

2݉ ௫ൣ
ଶ  ሺ௬ െ ሻଶ൧ݔܤ݁ െ ൠݔܧ݁ Ψሺݔ, ሻݕ ൌ ,ݔΨሺߝ  ሻ                        ሺ 2.12 ሻݕ

As the Hamiltonian is independent on y, the solution still has the same form as Eq. (2.2). 
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Substitute Eq. (2.2) into Eq. (2.12), after simplified manipulations, we have equation for 

  :ሻݔሺݑ

ቈെ
ଶ

2݉
݀ଶ

ଶݔ݀ 
1
2 ݉߱

ଶሺݔ െ ܺሻଶ ሻݔሺݑ ൌ  ሻ                        ሺ2.13ሻݔሺݑᇱߝ

where ܺ ൌ ݈
ଶ݇௬  ߭ௗ/߱ is again the center of cyclotron orbit moving with drift 

velocity ߭ௗ ൌ ᇱߝ and ܤ/ܧ ൌ ߝ  ܺܧ݁ െ ݉߭ௗ
ଶ/2.  Therefore ݑሺݔሻ has the same form as 

Eq. (2.5) and energy levels are given by: 

ߝ ൌ ൬݊ െ
1
2൰ ߱ െ ܺܧ݁ 

1
2 ݉߭ௗ

ଶ                               ሺ 2.14 ሻ 

Eq. (2.14) indicates that the degeneracy on ky is lifted by applying static electric field. 

Suppose the Fermi level lies on Landau level n. Then using the orthogonality of the one-

dimensional harmonic oscillator, we attain the velocities in x and y directions for 

electrons at the Fermi level:  

߭௫ ൌ
1
݉ ඵ ݔሺ߶ൣݕ݀ݔ݀ െ ܺሻ݁௬൧ற௫߶ሺݔ െ ܺሻ݁௬ ൌ 0 

߭௬ ൌ
1
݉ ඵ ݔሺ߶ൣݕ݀ݔ݀ െ ܺሻ݁௬൧றሺ௬ െ ݔሻ߶ሺݔܤ݁ െ ܺሻ݁௬ ൌ െ߭ௗ ൌ െ

ܧ
 ܤ

Again, with current density  ൌ െ࣏݁݊ and relation  ൌ ௫௬ߪ and ࡱߪ ൌ െߪ௬௫, we attain the 

conductivity tensor: 

ߪ ൌ ൬ 0 െ݁݊/ܤ
ܤ/݊݁ 0 ൰                                                      ሺ 2.15 ሻ 

Thus the resistance tensor follows:  

ߩ ൌ ൬ 0 ݊݁/ܤ
െܤ/݁݊ 0 ൰                                                      ሺ 2.16 ሻ 

These results of conductivity and resistivity tensors are different with those in classical 

transport cases. Let’s check the off-diagonal elements of the tensors first. From Eq (2.11) 
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and (2.16), the off-diagonal resistivity is the same, giving the exact Hall resistivity. When 

Landau levels are totally resolved, condition ߱߬௧ ب 1 will be satisfied. Under this 

condition, consistence is also found in off-diagonal conductivity in Eq. (2.10b) and 

For the diagonal conductivity and resistivity, the difference is obvious. In quantum 

transport, an ideal 2DEG under strong magnetic field has zero diagonal conductivity and 

resistivity so that there is only pure Hall current, orthogonal to external electric field, in 

the system. 

But in the real 2DEG system, scattering potential, V, is always present.  Normally, V 

is much smaller than the external potential e E x so that we can treat V as a perturbation. 

Although it was reported [20] that up to second order in V, there is no change on the Hall 

conductivity, the presence of V does lead to nonzero diagonal conductivity as well as 

diagonal resistivity. More details will be provided in following sections. 

Another important property of quantum transport to be emphasized is that even when 

diagonal conductivity is nonzero due to scattering, it is still much smaller than the off-

diagonal one, that is ߪ௫௬ ب ,௫௫ߪ  :௬௬, which will therefore leadߪ

௫௫ߩ ൌ
௫௫ߪ

௬௬ߪ௫௫ߪ  ௫௬ߪ
ଶ ൎ

௫௫ߪ

௫௬ߪ
ଶ                                               ሺ2.17ሻ 

This fact that diagonal resistivity is directly proportional to diagonal conductivity is 

contrary to common idea on the reverse relation between resistivity and conductivity at 

weak or zero magnetic field. 
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2.4. Shubnikov de Haas (SdH) oscillations 

Typical SdH oscillations in magnetoresistance in a 2DEG at T = 0.3 K are shown in 

Fig. 2.3 [21].  

 

Fig. 0.3 Typical SdH oscillations observed in a 2DEG in GaAs-Al0.3Ga0.7As heterostructure 

with density ݊ ൌ 2.1 ൈ 10ଵଵcmିଶ and mobility ߤ ൎ 3.0 ൈ 10 cmଶ/Vs. (figure adapted from 

Ref. 21) 
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At low temperature (T < 4 K ), elastic scattering by impurities is dominant. With 

Fermi golden rule, the transition probability ܹఈఈᇲ is given by: 

ܹఈఈᇲ ൌ
ߨ2


ఈߝሺߜᇱۧ|ଶߙ|ܸ|ߙۦ| െ  ఈᇲሻ                                     ሺ2.18ሻߝ

where V is scattering potential, ߙ,  ᇱ represent initial and final states of scattering withߙ

energies ߝఈ,  ఈᇲrespectively. Thus the longitudinal conductivity resulting from theߝ

migration of the center of cyclotron orbits is given by the Titeica formula [22]:   

௫௫ߪ ൌ
1
2 ݁ଶ݊  ܹఈఈᇲ·ሺܺ െ ܺᇱሻଶ ൬െ

߲ ఈ݂

ఈߝ߲
൰

ఈఈᇲ

                           ሺ2.19ሻ 

where ܺ, ܺᇱare centers of cyclotrons of initial and final states and 

ఈ݂ ൌ 1/ሾ݁ሺఌഀିாಷሻ/ಳ் െ 1ሿ is the Fermi distribution of electrons. Under relaxation time 

approximation, the resistivity can be given by: 

௫௫ߩ ൌ ߩ 1   ܾ cos ൬
ிܧߨ2

߱
ݎ െ

ߨ
4൰

ஶ

ୀଵ

൩                            ሺ2.20ሻ 

where  

ܾ ൌ
ሺെ1ሻ

ଵ/ଶݎ ൬
߱

ிܧ2
൰

ଵ/ଶ ܶ/߱݇ݎଶߨ2

sinhሺ2ߨଶݎ ݇ܶ/߱ሻ cos ൬
כ݉݃

2݉
൰ݎߨ ݁ିଶగ/ఠ        ሺ2.21ሻ 

where g is the effective g-factor and m* is the effective mass of 2DEG. The oscillatory 

behavior of longitudinal resistivity in 1/B results from the fact that the density of states 

oscillates with filling factor, ν, as shown in Fig. 2.2.  The frequency of the SdH 

oscillation in 1/B is given by: 

݂ ൌ ݏ
݄
݁ ݊ଶ                                                                    ሺ2.22ሻ 

where s = 1/2  if spin levels in the same Landau level are not resolved, otherwise s = 1. 
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2.5. Integer Quantum Hall Effect 

At higher magnetic field, diagonal and off-diagonal resistance will show the integer 

quantum Hall effect, first observed by K. von Klitzing, G. Dorda and M. Pepper [1], in 

which Hall resistance exhibits a series of plateaus with precise values of ݄/ሺ݁ଶݒ) and 

longitudinal resistance is almost zero when filling factor, v, is an integer; that is, when the  

Fermi level is located midway between two adjacent Landau levels. Typical traces of the 

integer quantum Hall effect is shown in Fig. 2.4. The integer quantum Hall effect can be 

understood in the following way. At high magnetic field, due to presence of impurities in 

2DEG system, most of states of electrons are localized except the states at the center of 

Landau levels, i.e. only the center of each Landau level contains extended states; the rest 

are localized states, and the energy span between two adjacent extended states area is the 

mobility gap, as shown in Fig. 2.5. During transport, only the extended states contribute 

to conduction. When the Fermi level locates inside the mobility gap, all states around the 

Fermi level are localized and play no part in conduction. Let’s consider a 2DEG in a Hall 

bar as shown in Fig. 2.6. A strong magnetic field is applied perpendicular to the 2DEG 

and a negative voltage bias, V1, is applied to terminal-1 so that electron flow will leave 

terminal-1 and move to terminal-2. At a specific magnetic field such that Fermi level is at 

the middle of mobility gap, all states inside the bulk 2DEG are localized and electrons 

only can travel through edge sates. Due to boundary confinement, the Landau level will 

bend up rapidly at vicinity of Hall bar edge, as shown in Fig. 2.7. The number of edge 

state at the Fermi level is the number of occupied Landau levels, that is, the filling factor, 

v. In a four-terminal measurement, terminal-3, 4, 5 and 6 will carry no net current. Under 
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we can prove ଷܸ ൌ ହܸ and ଶܸ ൌ ସܸ ൌ ܸ. And current carried by each edge state is 

– ሺ݁ଶ/݄ሻሺ ଵܸ െ ଶܸሻ, thus a total current ܫ ൌ– ሺ݁ଶ/݄ሻሺݒ ଵܸ െ ଶܸሻ leaves terminal-2 to 

terminal-1. Therefore the longitudinal and Hall resistances are given by: 

ܴ௫௫ ൌ ሺ ହܸ െ ଷܸሻ/ܫ ൌ 0 

ܴ௫௬ ൌ ଷܸ െ ସܸ

ܫ ൌ ଵܸ െ ଶܸ

െݒሺ݁ଶ/݄ሻሺ ଵܸ െ ଶܸሻ ൌ െ
1
ݒ

݄
݁ଶ 

which give the vanishing longitudinal resistance and quantized Hall resistance. When we 

sweep magnetic field, the Fermi level will move inside mobility gap. The conductance, as 

well as resistance, will not change because the localized states have no contribution to 

conduction. Thus plateaus will form in Hall resistance and their width is determined by 

the width of the mobility gap.  

 

 

Fig. 0.5 Extended states and localized stated distributed in diagram of density of states of 

Landau levels. 
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Fig. 0.7 Diagram of edge states in Hall bar with width a. It is clear that number of edge states 

at the Fermi level is equal to the number of occupied Landau levels. 

 

Fig. 0.6 A Hall bar with 6 terminals under strong magnetic field, showing propagation of edge 

states. 
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2.6. Geometric Resonance 

To study electron scattering on 2DEG, one-dimensional [4-6] and two-dimensional 

artificial periodic scatterers were introduced. New magnetoresistance oscillations, namely 

geometric resonances (GR) were observed at low magnetic field in these two cases. For a 

1D periodic modulation potential, the typical oscillations in longitudinal resistances are 

shown in Fig. 2.8. [4], in which resistivities perpendicular, ୄߩ, and parallel, צߩ to 

modulation oscillate out of phase and magnitude of oscillations of ୄߩis 

 

 

Fig. 0.8 Magnetoreisitance trace of longitudinal resistivity parallel, צߩ, and perpendicular,   ୄߩ, 

to the one dimensional modulations at T = 2.2 K of 2DEG with density of 3.16 ൈ 10ଵଵcmିଶ 

and mobility of 1.3 ൈ 10cmଶ/Vs. Oscillations of geometric resonance are clearly shown. 

(figure adapted from Ref. 4) 
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much larger, more than one order, than that of צߩ. The extrema in oscillations of ୄߩ arise 

when radius of cyclotron orbit, ܴ ൌ ݈
ଶ ݇ி, is a multiple of  the lattice period a such that 

2ܴ ൌ ሺ݉  ߶ሻܽ, ݉ ൌ 1, 2, ….                                      ሺ2.23ሻ 

where ߶ is the phase shift having different values for minima and maxima. In a 

semiclassical picture, a drift of a guiding center along the 1D modulation [23] gives rise 

to the oscillations of ୄߩ. Quantum-mechanically, band conduction, resulting from the 

diffusion contribution, dominates ୄߩ so that an oscillatory dependence of bandwidth of 

the modulation-broadened Landau level gives rise to the oscillations [5, 6, 24, 25]. And 

migration of cyclotron orbit center due to impurities scattering, collision contribution, 

results in צߩ. This migration is determined by DOS so that an oscillatory DOS due to 

modulated potential will give rise to oscillations in [25 ,24] צߩ. 

In 2D modulations, an antidot lattice, the oscillations in longitudinal resistance, GR, 

are shown in Fig. 2.9 [7]. This GR also stems from a commensurability effect between 

cyclotron radius and period of potential lattice, a. The first resistance peak occurs at 

2ܴ ؆ ܽ. After the discovery, further experiments were done in exploring the dependence 

of GR on the structure of antidot lattices, such as on rectangular lattices with different 

period [26-30], hexagonal lattice [31], and triangular lattice [13, 32, 33]. Extensive 

theoretical works were done on understanding this GR [34-45]. 

Two different semiclassical models were applied to the GR for low and high qualities 

2DEG respectively. In low mobility 2DEG with 2D modulation, the GR is caused by a 

pinned orbit mechanism [7, 36]. This model says when diameter of cyclotron orbit is 

commensurate with period of antidot lattice, the orbit will be pinned around the antidot, 
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as shown in inset of Fig. 2.9, and will not respond to electric field so that the electron will 

have no contribution to conductance; thereby an increase of resistance will be observed. 

While in high quality 2DEG situation, a mechanism of runaway orbit of delocalized 

electrons contributes to the oscillations [35, 39, 40, 43]. When the condition of 

commensurability between the diameter of cyclotron orbit and period of modulation is 

satisfied, the orbits will experience more scatterings so that they will be skipping from 

one antidot to its neighboring antidot, which will cause an increase in conductance as 

well as in resistance. Typical diagrams of pinned orbits and runaway orbits are shown in 

Fig. 2.10. Quantum-mechanically, the presence of 2D modulation lifts the degeneracy of 

 

Fig. 0.9 Geometric resonance on a 2DEG with a two dimensional rectangular modulations, 

rectangular antidot having period a = 300 nm at T = 1.5 K. Inset shows pinned orbits 

corresponding to resistance peaks. Number indicates number of antidots enclosed by a pinned 

orbit. (figure adapted from Ref. 7) 
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LLs and leads to an oscillatory width of Landau bands and a internal self-similar 

Hofstadter-type subband structures [37, 38]. This internal subband structure gives rise to 

an oscillatory behavior of band conductivity, thereby resulting in GR.  

 2.7. Microwave Induced Resistance Oscillation and Zero Resistance State 

When a high mobility 2DEG is exposed to microwave (MW) irradiation, the 

microwave photoresistance will show a giant amplitude oscillations [8, 9], namely 

microwave induced resistance oscillations (MIRO), whose extrema are controlled by the 

ratio between the MW frequency, ߱ெௐ, and cyclotron frequency, ߱,: 

߳ ൌ
߱ெௐ

߱
ൌ ൜݆                 ݉ܽݔ

݆  1          ݉݅݊     ݆ ൌ 1,2, …                                ሺ2.24ሻ 

where j is the difference between the indices of LLs. A typical MIRO trace is shown in 

Fig. 2.11. These remarkable photoresistance oscillations can be understood in a simple 

semiclassical picture. In a 2DEG, the presence of short-range scattering, resulting from 

interface roughness and residual impurities in the spacer, excites transitions between 

multiple LLs, associated with a finite momentum transfer, Δݍ ൌ 2݇ி, with ݇ி the 

Fig. 0.10  Schematic diagrams of pinned orbits and runaway orbits. 
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electron Fermi wave vector. This momentum transfer is equivalent to a jump of an 

electron cyclotron orbit center along the transverse direction so that a conductivity peak 

can be observed. Qualitatively, based on the toy radiation induced scattering model [46, 

47] and an assumption of uniform probability of photon-assisted scattering for all 

harmonics, MW induced photoresistance can be calculated by formula [48]: 

Fig. 0.11 Microwave induced resistance oscillations observed in a 2DEG with mobility 

ߤ ൎ 3.0 ൈ 10ܿ݉ଶ/ܸݏ under MW f = 94 GHz illumination at T = 0.4 K (solid line) and 

magnetoresistance without MW illumination is shown by dotted line. The left inset shows 

Faraday geometry for experimental setup and right inset shows a plot of the multiply index j vs 

1/B for f = 55 GHz and f = 148.5 GHz to reveal an electron effective mass ݉כ ൎ 0.068݉. 

The small arrow marks magnetoplasmon resonance signal. (figure adapted from Ref. 

8) 
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Δܴ௫௫
ఠ ሺܤሻ ൌ ܣ න ሻߝሾ݊ிሺߝ݀ െ ݊ிሺߝ  ߱ሻሿߥሺߝሻ ߲Ԫߥሺߝ  ߱ሻ              ሺ2.25ሻ 

where A is a field independent coefficient, ݊ிሺߝሻ ൌ 1/ሼ1  ߝሾሺݔ݁ െ  ிሻ/݇ܶሿሽ is theߝ

Fermi distribution function and 

ሻߝሺߥ ൌ 
ܤ݁

ଶΓߨ ·
Γଶ

Γଶ  ሾߝ െ ሺ݅  1/2ሻ߱ሿଶ

ஶ

ୀ

                             ሺ2.26ሻ 

 is the density of states with  Г  the width of the LL. 

Additionally, a magnetoplasmon (MP) resonance signal is also shown in Fig. 2.10, 

marked by a small arrow. MP resonance occurs at a magnetic field satisfying condition:  

߱ெௐ
ଶ ൌ ߱

ଶ  ߱
ଶ                                                          ሺ2.27ሻ 

where ߱ெௐ is the MW frequency, ߱ is the cyclotron frequency, and ߱ is the 2D 

plasmon frequency, which is given by [49, 50]: 

߱
ଶ ൌ

݊݁ଶ݇
2߳߳݉כ                                                              ሺ2.28ሻ 

where wave vector ݇ ൌ  with w the lateral width of 2DEG and ߳ is effective ݓ/ߨ

dielectric constant of the material.   

When a higher mobility 2DEG is exposed to sufficiently strong MW irradiation, 

MIRO will develop into a novel zero-resistance-state (ZRS) [10, 11], as shown in Fig. 

2.12, at which transverse resistance vanishes within experimental uncertainty while Hall 

resistance remains at its classical value. A later measurement of photoconductance in the 

Corbino geometry proved the existence of zero-conductance-state (ZCS) [12] as well.  
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After they were discovered, these novel ZRS and ZCS stimulated intense 

experimental attentions. Refs. [13, 48, 51-71] explored ZRS from various angles, such as 

experiments on phase shift analysis of ZRS [54, 57], effect of multiple photons process 

[64, 65] and MW polarization [60], interactions with edge-magnetoplasmon [53, 70, 71], 

Fig. 0.12 Longitudinal resistance ܴ௫௫ (left axis) shows vanishing resistance values, zero-

resistance-state, under MW (f = 57 GHz) illumination at T = 1 K and Hall resistance  ܴ௫௬ 

(right axis) has classical value (thick line). And ܴ௫௫ without MW illumination is shown by thin 

line. Vertical dashed lines indicate values of ε calculated by Eq. (2.24). The inset depicts the 

layout of experimental setup, Faraday geometry. (figure adapted from Ref. 11) 
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and influence of presence of in-plane magnetic field [59, 63] or 2D spatial modulation 

[13] or DC bias [62, 68, 69].  

At the same time, many theoretical works [14, 46, 72-111] have been done on 

understanding ZRS. Works have been done on exploring effects of MW polarization 

[108, 111], procedure involving multiple photons [88, 104], and the influence of the 

induction at a 1D or 2D modulation [94, 95, 97]. Most other works proposed mechanisms 

to explain this novel phenomenon. It was theoretically suggested [14] that high MW 

irradiation on ultraclean 2DEG would cause absolute negative conductivity (ANC) whose 

instability would lead to formation of electron current domains. Across these domains, 

transverse voltage drop is zero, resulting in a zero measured transverse resistance. Two 

microscopic mechanisms may be responsible for ANC. One is the so-called 

“displacement” mechanism [42, 46, 78, 79, 81, 82, 86, 87, 89, 91, 96, 101, 105, 107, 

110], in which MW photon-assisted impurity scattering triggers transitions between 

different LLs and reduces the conductivity. When the scattering is strong enough, it will 

drive conductivity to zero or even to absolute negative values. Another mechanism is 

“electron distribution function” mechanism [72, 83, 94, 95, 103], in which ANC arises 

from MW-induced non-equilibrium oscillation of electron distribution function in the 

density of states (DOS). These two models can explain some aspects of the effect and 

reproduce the observed period, phase and magnetic field damping. However, so far, the 

exact microscopic nature of ZRS has not been conclusively established.  
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Chapter Three Quantum Transport in 2DEG with Triangular Antidot Lattice 

3.1. Geometric Resonance in high mobility 2DEG with triangular antidot lattice 

In our experiments, a 2D triangular antidot lattice was patterned on an ultraclean 

2DEG, and very sharp GR oscillations peaks were resolved due to high mobility of 

2DEG after introduction of antidot lattice.  

The 2DEG is cleaved from a high-mobility GaAs/Al0.3Ga0.7As heterostructure wafer 

 

 

Fig. 0.1 Diagrams of cross section of sample and Hall bar with triangular antidot lattice 
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grown by molecular beam epitaxy, with a T = 0.3 K mobility ߤ ൎ 1 ൈ 10cmଶ/Vs before 

the antidot lattice is patterned. An 80-݉ߤ-wide, 320-݉ߤ-long Hall bar was first defined 

on the sample by optical lithography and wet etching. Then a triangular antidot lattice, 

with period of a = 1500 nm and dot diameter of d = 300 nm, was patterned on the Hall 

bar by e-beam lithography and reactive ion etching. The detailed procedure of the 

fabrication can be found in Appendix A4. The diagrams of sample cross section and Hall 

bar with antidot lattice are shown in Fig. 3.1 and SEM image of sample surface after 

introduction of antidot lattice is shown in Fig. 3.2. After the lithographical processing, 

 

 

Fig. 0.2 Image of triangular antidot lattice with a = 1500 nm and d = 300 nm. 
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the 2DEG has an electron density ݊ ൌ 2.83 ൈ 10ଵଵcmିଶand a zero field mobility 

ߤ ൌ 2.5 ൈ 10cmଶ/Vs. The electron density was calculated from period of SdH 

oscillations and mobility was calculated from zero field resistivity. Such parameters were 

obtained after a brief illumination from a red light-emitting diode at temperature T = 4 K. 

Note that the introduction of an antidot lattice reduced mobility fourfold. However, the 

transport mean free path corresponding to this mobility, ݈ ൌ  where m* is ,݁/ߤி߭כ݉

electron effective mass and ߭ி is the Fermi velocity, is equal to 21.9 μm, exceeding the 

lattice period a by at least one order. This indicates a much cleaner system than 

previously reported [7, 30, 32]. Moreover, as the dimension of Hall bar is still much 

larger than mean free path, we can treat the Hall bar as macroscopic.  

Our measurement was performed in a He3 refrigerator equipped with an 11-T 

superconducting magnet. The magnetoresistance Rxx is measured with standard low 

frequency lock-in techniques (frequency 23 Hz and excitation current 1 µA). A Rxx trace 

is shown in Fig. 3.3, in which a set of sharp peaks were resolved and are attributed to 

geometric resonance. Note that in the magnetic field regime of all these peaks, the 

condition ߱߬௧   is satisfied, where τtr is the intrinsic momentum relaxation time, or ߨ2

transport lifetime, determined by mobility, ߬௧ ൌ  so that a full cyclotron orbit , ݁/כ݉ߤ

can be completed between two sequential scattering events.  

From Fig. 3.3, the observed GR are much sharper than previously reported results [7, 

26-33] and up to seven distinct resistance peaks are resolved, attesting to the 

extraordinary quality of our sample. Remarkably, the GR peaks exhibit an alternating 

strength in a B sweep, with the “even” peaks (i.e., 2, 4, 6) standing out as compared to 
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the “odd” peaks (1, 3, 5, 7). Moreover, the peak position in B does not conform to the set 

of ratio ܴ/ܽ in previous reports [7, 32, 33]. For example, according to Ref. 32, the 

strongest peak occurs at ܴ/ܽ ൌ 0.5 corresponding to a first-pinned semiclassical orbit in 

a triangular lattice of period a, whereas in Fig. 3.3 the strongest peak (labeled by 2) 

 

Fig. 0.3 Geometric resonance peaks in low field of resistance Rxx on 2DES with triangular 

antidote lattice (a = 1500nm, d = 300nm) at T = 0.33 K. The peaks from 1 to 7 correspond to 

ratio Rc/a = 0.45, 0.56, 0.7, 0.94, 1.13, 1.45 and 1.9, respectively, where Rc is the cyclotron 

radius. Inset (a) is the schematic experimental setup of sample and (b) is a sketch of 

commensurate orbits corresponding to the peaks. 
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occurs at ܴ/ܽ ൌ 0.56. A similar observation can be found for the second-strongest peak 

(4 in Fig. 3.3), where ܴ/ܽ is found to shift from ~ 0.85 to 0.94 in the present case. The ~ 

10% increase of the ratio ܴ/ܽ indicates that in high mobility samples, major resistance 

peaks may not correspond to pinned orbits. Rather, they correspond to those 

commensurate orbits, which dynamically experience most frequent scattering events, and 

hence higher conductance. Since in our high-mobility sample the GR occur in the regime 

௫௬ߩ ب ௫௫ߪ, ௫௫, and soߩ ൌ ௫௫ߩ௫௫/ሺߩ
ଶ  ௫௬ߩ

ଶ ሻ ן -௫௫, these states give rise to the highߩ

resistance peaks in the Hall bar geometry. This scenario requires that the electron orbit of 

radius Rc be scattered sequentially by multiple antidots. The orbital dynamics described 

here is equivalent to the theoretically studied runaway trajectories of delocalized 

electrons skipping from one antidot to its neighboring antidot [35, 39, 40, 43]. These 

orbits are drawn schematically in inset (b) of Fig. 3.3. The exceptional sharpness of the 

peak can be attributed to the small aspect ratio of d/a in the present sample.  

The temperature-dependent measurements show that the major resistance peaks (2, 4, 

6) persist up to above 10 K whereas the minor peaks (1, 3, 5) essentially diminish at T > 6 

K. From these temperature dependences, we can roughly estimate the height of antidot 

potential for the electron orbits involved, which is much less than the Fermi energy of the 

2DEG (~ 100 K). 

To get more understanding on the geometric resonance, temperature dependence of 

the GR was measured from T = 0.33 to 10 K; the results are shown in Fig. 3.4 and 3.5. At 

T < 1.5 K, the amplitude of the GR shows very little change with temperature, while the 

SdH oscillations dampen quickly with increasing temperature. At T > 1.5 K, the GR 
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dependence of the B = 0 conductance, shown in inset (b), which is characteristic for the 

thermally excited phonon-scattering model [112]. From insets (a), (b), and (c) of Fig. 3.5, 

we can see that this regime transition happens at about T = 1.5 – 2 K.  

 

For comparison, another sample was cleaved from the same sample wafer and 

patterned a triangular lattice with period a = 800 nm. The antidot lattice was introduced 

by e-lithography and wet etching and its SEM image is shown in Fig. 3.6. The image 

clearly shows that the diameter of each antidot is around 400 nm which is larger than the 

 

Fig. 0.6 SEM image of antidot lattice with period a = 800 nm and diameter d = 400 nm which 

is larger than the designed value d = 300 nm. 
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designed value, d = 300 nm. This enlargement of antidots results from wet etching 

process. Magnetoresistance trace, shown in Fig. 3.7, shows very strong GR whose 

amplitude is about three orders larger than that of GR in Fig. 3.3. And after introduction 

of antidot, mobility of 2DEG is more two orders smaller than its original value.   

Magnetoresistance measurements on 2DEG with antidot lattice indicate that our first 

 

Fig. 0.7 Geometric resistance peaks in a low field of resistance ܴ௫௫ on 2DEG with triangular 

antidot lattice (a = 800 nm, d = 400 nm) at T = 0.3 K.  The amplitudes of GR are around three 

orders larger than those in Fig.3.3. 
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sample still has extraordinary quality after introduction of triangular lattice, which make 

it an appropriate system to explore influence of 2D modulation on microwave induced 

resistance oscillations.  

3.2. MIRO on 2DEG with triangular antidot lattice 

The MIRO and ZRS in a modulated 2DEG have been studied in recent theoretical 

works [94, 95, 97]. In particular, for 1D modulation [94, 95], the displacement model and 

the distribution function model are found to contribute to MIRO in an anisotropic 

In principle, experiments in such a system can help to distinguish the relative 

contributions from each mechanism. For 2D modulation [97], different features can be 

expected on an ultraclean 2DEG. Moreover, a periodical modulation with period a breaks 

translational symmetry of the 2DEG allowing studies of photoresistance with a finite 

momentum transfer Δݍ ൌ   .in this system ܽ/ߨ2

Our previous magnetoresistance measurement proved a high quality 2DEG after 

patterned triangular antidot lattice. This provides us an appropriate system for 

experimental study of MW photoresistance in a 2D periodically modulated 2DEG. MIRO 

are observed in the 2DEG and retain a 1/B periodicity as in unmodulated 2DEG, but their 

amplitude is strongly damped. We also found the photoresistance peaks corresponding to 

long-wavelength magnetoplasmon (MP) resonance; the dispersion of MP is controlled by 

the width of the Hall bar rather than the period of potential modulation. We conclude that 

the MIRO, MP, and DC geometric resonance (GR) are decoupled from each other in our 

experiments. While MW photoconductivity has been reported for antidot arrays in a 

modest-mobility 2DEG [30], our work on a high-mobility system reveals different 
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features, including MIRO, and opens a window for studies of nonequilibrum quantum 

transport.  

The sample used for photoresistance measurement is the same one used in the GR 

measurement. It is an 80 µm ൈ 320 µm Hall bar with a 2DEG having an electron density 

݊ ൌ 2.83 ൈ 10ଵଵcmିଶand a zero field mobility ߤ ൌ 2.5 ൈ 10cmଶ/Vs after patterned a 

triangular antidot lattice, with period of a = 1500 nm and dot diameter of d = 300 nm. 

Our measurement was performed in He3 refrigerator equipped with an 11-T 

superconducting magnet. The magnetoresistance Rxx is measured with standard low 

frequency lock-in technique (frequency 23 Hz and excitation current 1 µA). For the 

photoconductivity measurement, the mutual orientation of the waveguide, sample, and 

the magnetic field corresponds to Faraday configuration in which the excitation current 

flows perpendicularly to the microwave polarization. 

We measured the MW photoresistance on a 2DEG with antidot lattice. Here the MW 

photoresistance is defined as the change of resistance due to MW irradiation, i.e. 

Δܴ௫௫
ఠ ሺܤሻ ൌ ܴ௫௫

ఠ ሺܤሻ െ ܴ௫௫
 ሺܤሻ, with ܴ௫௫

ఠ ሺܤሻ and ܴ௫௫
 ሺܤሻ being the magnetoresistance 

with or without MW irradiation, respectively. As an example, Fig. 3.8 shows traces with 

and without continuous MW irradiation at f = 55.8 GHz. In this measurement, the 

environment temperature was kept at T ~ 1 K. 

The ܴ௫௫ trace with MW irradiation looks quite complicated because GR and MIRO 

overlap in this low magnetic field regime. And as can be seen in Fig.3.8, the GR 

dominate this regime and make the MIRO difficult to resolve. Our analysis shows that 

under MW irradiation, both the electron-heating effect and MIRO contribute to the Δܴ௫௫ 

of the patterned 2DEG. The heating effect originates from the strong T dependence of GR 



p

p

 

eaks in the t

eaks exhibit

 

Fig. 0.8 (a) M

difference  (d

(solid line)  m

peak of MW-

 

temperature 

t a negative 

Magnetoresist

dotted line) be

measured with

-induced osci

range T > 1

temperature

tance traces w

etween the tw

h the double-m

illation. 

1.5 K, as sho

e coefficient

with and witho

wo traces show

modulation te

own in Fig. 

, ܴ݀௫௫/݀ܶ 

out continuou

wn in (a), and

echnique. The

3.4 in sectio

൏ 0, electro

us MW irradia

d the MW-ind

e arrows indic

on 3.1. Sinc

on heating re

ation. (b) The

duced signal 

cate the first 

38 

e GR 

esults 

 

e 



39 

 

in a reduction of ܴ௫௫ in the sample. Our main purpose in this experiment is to recover the 

photoresistance Δܴ௫௫
ఠ  from the background of the electron-heating signal.  

It is possible to deduce the Δܴ௫௫
ఠ  by numerically substracting ܴ௫௫

  from ܴ௫௫
ఠ , as shown 

by the dotted line in Fig. 3.8 (b). The Δܴ௫௫
ఠ  obtained in this way shows an oscillatory 

structure roughly periodical in 1/B, similar to the MIRO observed in unpatterned 2DEG. 

On the other hand, significant distortion of the ܴ௫௫
ఠ  can be anticipated owing to the 

contribution from the electron heating effect. While both the ܴ௫௫
  and ܴ௫௫

ఠ  data were taken 

at approximately the same environment temperature T ~ 1.0 K, the electron temperature 

is expected to be considerably higher in ܴ௫௫
ఠ , leading to a large heating component. 

The Δܴ௫௫
ఠ  can also be measured directly by a double modulation technique [114] in 

the following fashion. The MW was chopped at a frequency f = 11.5 Hz, and the sample 

excitation current is synchronized at the double frequency 2f = 23 Hz. Using the 

frequency f as a lock-in reference, it can be shown that the Δܴ௫௫
ఠ  can be attained from the 

90° lock-in signal [114]. The Δܴ௫௫
ఠ  at the same MW frequency f = 56 GHz, measured 

with a double-modulation method, is shown in Fig. 3.8 (b). We note that the Δܴ௫௫
ఠ  

obtained by both methods coincide reasonably well in their oscillatory structure in B, 

indicating the equivalence of these two methods in obtaining the Δܴ௫௫
ఠ . 

The following observations can be made for the MIRO in a modulated 2DEG, as 

measured here, in comparison to the MIRO in an unpatterned 2DEG (8). First, the MIRO 

in modulated 2DEG retain the characteristic period in 1/B determined by ߳ ൌ ߱ெௐ/߱.  

Second, the damping of MIRO is much steeper in the modulated sample even though the 

mobility is comparable. The mobility of the unpatterned sample in Ref. 8 is about 
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3 ൈ 10cmଶ/Vs, where up to ten MIRO peaks can be observed, whereas in the present 

sample of a mobility 2.5 ൈ 10cmଶ/Vs, only two peaks are clearly resolved. Of course, 

mobility is directly proportional to the transport lifetime ߬௧, which is only relevant at B = 

0. In a small magnetic field, the electron orbital dynamics are strongly influenced by the 

modulation. The above observations may point to an interesting theoretical question as to 

how such a modulation will affect the electrical current distribution in the MIRO regime. 

On a side note, our results could also support the notion that MIRO is a bulk, rather than 

an edge, effect.  

Using the double-modulation method, we have measured the MIRO in a wide range 

of frequencies between 32 and 130 GHz, and qualitatively the same conclusion can be 

drawn throughout this range: MIRO can be clearly observed in a 2DEG with a shallow 

triangular antidots modulation, but with strongly damped amplitude. 

We observed an additional single-resistance peak in the high-frequency regime f > 85 

GHz, and identified it as the signal of magnetoplasmon resonance [8, 50]. Since the 

MIRO and MP resistances are superposed, we rely on the following empirical procedure 

to extract the MP signal. 

It is shown empirically in Ref. 48 that the periodicity and the shape of Δܴ௫௫
ఠ  in the 

MIRO can be reasonably fitted by a model based on the oscillatory electron-distribution 

function at a given temperature T, Eq. (2.25), with the Landau level width Г being a 

fitting parameter. In Fig. 3.9, we fit the 120 GHz experimental Δܴ௫௫
ఠ  (solid line) with a 

calculated curve (dotted line). Both the zero line and the amplitude of the curve were 

adjusted such that the envelops of both coincide. From the fit, we obtain a LL width of ~ 
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Fig. 0.9 A selected photoresistance trace at MW frequency f =120 GHz and the numerical 

fitting for MW-induced oscillations. The little upwards arrows indicate peaks of microwave 

induced resistance oscillations and the downwards arrow indicates the magnetoplasmon peak. 

The difference between these two traces gives the clear magnetoplasmon signal [ see (b) ]. The 

inset shows the typical relation between the microwave frequency and magnetoplasmon peak 

position with the fitting curve based on Eq. (2.27). The unit of axes in inset is (100 GHz)2. 
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56 µeV ~ 0.65 K corresponding to a quantum scattering time of /Γ ~ 12 ps. It is 

interesting to compare the fitted LL width Г in the MIRO of unpatterned 2DEG from the 

same wafer, which is 41 µeV (16 ps). 

Subtracting the fitting curve from the experimental trace, we arrive at a trace which is 

dominated by a strong MP peak taking place at magnetic field given by Eq. 2.27: 

߱ெௐ
ଶ ൌ ߱

ଶ  ߱
ଶ.  This relation of Eq. 2.27 is well revealed in the inset of Fig. 3.9, and a 

slope of linear fitting gives a 2D plasmon frequency of 80.9 GHz. For our GaAs sample, 

taking into account the fact that the 2DEG is very close to the surface, the effective 

dielectric constant is 6.9 [50]. Using m* = 0.068 me and the width of Hall bar, 80 µm, 

with formula (2.28): ߱
ଶ ൌ ݊݁ଶ݇/2߳߳݉כ, we arrive at a 2D plasmon frequency 98 

which is about 20% larger than the measured one. This result is consistent with that in 

Ref. 50, in which the measured 2D plasmon frequency is smaller than the calculated one. 

The main reason for this discrepancy should come from the fact that formula (2.28) is 

derived for infinite 2D Plasmon. On a Hall bar sample, the electromagnetic field in the 

finite region surrounding the bar shall be quite different from the one in infinite plane 

[50], i.e. formula (2.28) is not accurate for Hall bar geometry.  
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Chapter Four Quantum Transport in 2D Hole Gas (2DHG) 

Two-dimensional hole gas (2DHG) in modulation doped GaAs/AlGaAs has attracted 

much attention for recent years because of its unique charge and spin properties derived 

from valence band structure. Typical band structure of bulk GaAs is shown in Fig. 4.1(a), 

in which the hole band has four fold degeneracy at k = 0 (light and heavy holes, spin up 

and down). Under confinement of quantum well, due to difference in effective masses of 

heavy and light holes (݉ு
כ ൌ 0.5 ݉, ݉

כ ൌ 0.08 ݉ are effective masses of heavy and 

light holes in bulk GaAs, respectively, with me the bare electron mass), heavy and light 

holes have different ground state energies so that their bands are separated, as shown in 

Fig. 4.1(b). Mainly because of inversion asymmetry of quantum well (Rashba effect) 

[115], the heavy band has further splitting at non-zero k even at zero magnetic field, 

named as zero field spin splitting, as shown in Fig. 4.1(b).  

 

Fig. 0.1 Band structure diagrams of (a) bulk GaAs and (b) GaAs in quantum well.  EH1 and EL1 

are ground state energies of heavy and light hole in the quantum well. 
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Many theoretical works have been done on calculating subbands structure and 

effective mass of 2DHG [116-122]. Extensive experimental research also has been 

reported on exploring properties of 2DHG formed in different structures [15, 123-139]. 

Until recently, the 2DHG materials have been provided by Be or Cr-doped (100), or Si-

doped (311)A GaAs structures. 2DHG in (100) GaAs is simpler than that in (311)A GaAs 

because of higher symmetry of the material. However, diffusion of Be dopants during the 

molecular beam epitaxial (MBE) procedure greatly limits mobility of 2DHG in Be-doped 

(100) GaAs. Wieck and Reuter [135], Manfra et al [136], and Gerl et al [137] reported a 

carbon (C)-doped (100) GaAs/AlGaAs MBE technique, which has led to a steady 

improvement in low temperature carrier mobility. Due to its unprecedented cleanliness, 

the C-doped GaAs/AlGaAs quantum structures become an increasingly important system 

for studies of strongly correlated carriers in which Coulomb interaction, disorder, and 

spin-orbital coupling parameters can be controlled. In the following sections, results of 

magnetotransport measurement conducted on 2DHG in C-doped (100) GaAs/AlxGa1-xAs 

square quantum well will be reported, which will include effective mass measurement 

with microwave (MW) cyclotron resonance (CR), gate characterization, zero field spin 

splitting and effective g-factor investigation with tilted magnetic field, geometric 

resonance (GR) on 2DHG with triangular antidot lattice, and microwave induced 

resistance oscillations on 2DHG.  

4.1. Effective mass of 2DHG 

Effective mass of 2DHG was measured by detecting microwave (MW) cyclotron 

resonance (CR). When MW cyclotron resonance happens, MW frequency ߱ெௐ shall be 

equal to cyclotron frequency  ߱, i.e. 
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߱ெௐ ൌ ߱ ൌ
ܤ݁

݉݉כ                                                          ሺ4.1ሻ 

where me, m* are bare electron mass and effective mass of hole, respectively. Thereby 

once MW frequency and magnetic field position of CR are known, the effective mass can 

be calculated.  

In MW CR, the sample will absorb microwave irradiation energy so that its 

temperature rises.  So cyclotron resonance can be located by monitoring the change of 

sample temperature, the CR signal [133]. Moreover, in the linear response regime, where 

measurement was performed, CR signal is proportional to absorbed MW power which is 

determined by the real part of photoconductivity of 2DEG. Therefore, the line shape of 

CR signal can be described by Drude model:  

ܴ݁ሼߪ௫௫ሽ
ߪ

ൌ
1  ሺ߱߬ோሻଶ  ሺ߱ெௐ߬ோሻଶ

ሾ1  ሺ߱߬ோሻଶ െ ሺ߱ெௐ߬ோሻଶሿଶ  4ሺ߱ெௐ߬ோሻଶ                    ሺ4.2ሻ 

where σo is conductivity at zero field, ߬ோ is the CR relaxation time which describes the 

effect of collisions of holes with scattering centers presented in 2DHG [140].  

4.1.1. Experiment setup 

The sample for MW CR measurement is 1 mm × 1 mm square without any contacts. 

It was cleaved from a sample wafer (wafer 10-21-03.1) which consists of 15 nm wide 

GaAs/Al0.4Ga0.6As quantum well grown by MBE on direction (001) and has Carbon δ-

doping layer situated 50 nm above from the well. It has a hole density of p ≈ 2.2 × 1011 

cm-2 and a mobility of µ ≈ 0.7 × 106 cm2/Vs at 300 mK. The experiment was performed 

at 4.2 K in a liquid helium dewar equipped with 9-T superconducting magnet. 

Measurement setup is shown on Fig.4.2. A long sapphire bar, about 1 mm wide and 0.5 

mm thick, goes through a hole on one wall of a brass cavity. Then the hole is filled 
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with Stycast 1266 Epoxy so that the sapphire bar can be held by the cavity but remains 

thermally isolated within the cavity. A Cernox thermometer (Lakeshore CX-1070-BG) is 

 

Fig. 0.2  Experimental setup for measuring effective mass of 2DHG by detecting microwave 

cyclotron resonance. 
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glued on the sapphire bar outside the cavity by G-vanish and sample is attached on the 

inside part of the sapphire bar by low temperature grease so that the sensor can 

sensitively detect the temperature change of the sample. Then the brass cavity is vacuum 

sealed and filled with small amount of He4 gas as exchange gas so that we can keep the 

temperature inside cavity as the same as the environment, 4.2 K. On the top of cavity, 

there is a window connected with MW waveguide. In the measurement, MW irradiation 

with fixed frequency goes down through waveguide and hits the sample, while the 

magnetic field is swept to get CR, which is then detected by the Cernox thermal sensor. 

In this setup, as the Cernox thermal sensor just needs to detect the change of temperature 

of sample, no calibration for Cernox sensor is needed. 

 

4.1.2. Experiment results 

In our measurements, CR in range between MW frequency, f = 25 and 55 GHz was 

detected.  Five selected CR signals of f = 25.5, 31.6, 39.2, 44.7 and 50.1 GHz are shown 

in Fig. 4.3.  A simple fitting with equation ߱ ൌ   gives m* ؆ 0.42, shown in݉כ݉/ܤ݁

inset of Fig. 4.3. The result that only one effective mass was detected implies that, 

roughly speaking, spin splitting in this structure is smaller than the Landau level 

broadening of Landau levels in this quantum well.  

We fitted the CR signal of f = 39.2 GHz with the Drude formula (4.2) by using ߪ, 

߬ோ and m* as fitting parameters, shown in Fig. 4.4. We determine simultaneously the m* 

؆ 0.42 and ߬ோ ؆ 14 ps. On the other hand, from ߤ ൌ ݁߬௧/݉݉כ, and with m* ؆ 0.4, 

we arrive at a transport scattering time, ߬௧ ൎ The ratio ߬௧/߬ோ .ݏ 160  10 indicates 

that in our modulation C-doped (100) GaAs/AlGaAs quantum well, long range scattering 
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4.2. Magnetoresistance measurement in 2DHG 

4.2.1. 2DHG with Gate 

 
The sample for magnetotransport measurement was cleaved from the same 2DHG 

wafer (10-21-03.1) as the one for effective mass measurement. The sample piece has size 

of 3 mm × 5 mm, on which a 20 squares 100 µm Hall bar was defined by 

photolithography. And a 100-nm-thick NiCr gate was patterned to cover the Hall bar by 

using thermal evaporation. After fabrication, the 2DHG still has a hole density of p ≈ 2.2 

× 1011 cm-2 and a mobility of µ ≈ 0.7 × 106 cm2/Vs at 300 mK. The magnetoresistance 

measurements were performed in Oxford He3 refrigerator, equipped with a 12 T 

superconducting magnet, with base temperature of 300 mK. DC gate voltage ranging 

from 5 to -1.2V was applied to the gate to change density of 2DHG. Three SdH traces of 

different gate voltages are shown in Fig. 4.5. 

Main features of the gate are following: 

1). The gate doesn’t work at gate voltage with range from 5 to -1V.  At the moment of 

applying gate voltage, the density of 2DHG does change, however, this change can’t 

be held and the density drifts back. 

2). When gate voltage is larger than 5V, the 2DHG totally dies out and has to be warmed 

up to recover. 

3). Once the gate voltage goes beyond -1V, the density of 2DHG can be changed from 

2.1 to 3.6 ൈ 10ଵଵcmିଶ and held, as shown in Fig. 4.5.  At gate voltage -1.2V, density 

increases by more than twice to 4.5 ൈ 10ଵଵcmିଶ. The inset shows relation of density 

vs gate voltage. The nonlinearity of curve is obvious.   
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preventing the gate from working well.  In this GaAs/AlGaAs quantum well structure, 

there is a front C δ-doping layer situated 50 nm away from the well. This doping layer 

has a few carriers but has a very low mobility. When we do transport measurements, we 

only see the 2DHG in the quantum well because of its much higher mobility so much 

lower resistance. However, when we apply a gate voltage, the doping layer would screen 

the 2DHG layer. Therefore, all the density change is happening in the doping layer. 

When we see a change in density which slowly drifts back, it means that the doping layer 

has a so high resistance that it takes time to charge up and fully screen the gate. 

4.2.2. Zero field spin splitting and g-factor of 2DHG 

The sample for magnetoresistance measurement is a 100 µm Hall bar with 20 squares 

lithographically defined on a 3 mm × 5 mm piece which was cleaved from a same wafer 

as the sample for effective mass measurement. The measurement was performed in a top-

loading dilution refrigerator equipped with an in situ rotator placed inside an 18-T 

superconductive magnet. With the rotator, the magnetic field could make a titled angle, θ, 

ranging from 0 to 90° with respect to the normal to the 2DHG plane. The 

magnetoresistance, Rxx, and Hall resistance, Rxy, are recorded by using standard low 

frequency, 17 Hz, lock-in technique with a 50 nA excitation current. 

Magnetoresistance of 2DHG was measured in the Hall bar sample. A typical 

Shubnikov de Haas (SdH) trace is shown in Fig.4.6, in which two main features should 

be emphasized. First, in low field regime, ୄܤ  1ܶ, clear beating pattern indicates 

existence of two SdH periods in 1/B. Spectrum of Fourier Transform (FT) of Rxx vs 1/B 

in range of 0.2 ~ 3 T, shown in Fig.4.7, indicates three frequencies݂ି , ା݂ and ்݂  
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with ்݂ ؆ ݂ି  ା݂ corresponding to total hole density. As in previous work reported for 

(001) GaAs/AlGaAs square quantum well, we can rely on the relation േ ൌ ሺ݁/݄ሻ േ݂ to 

estimate hole populations [141], with ିሺାሻthe density of lower (higher) populated 

subband: ି ؆ 0.94 ൈ 10ଵଵcmିଶ and ା ؆ 1.09 ൈ 10ଵଵcmିଶ. A population difference 

∆ ൌ 2ሺା െ ାሻ/ሺି   ሻ~15%  indicates existence of a finite zero field spinି

splitting due to spin-orbital interaction in the 2DHG. Such value is considerably smaller 

 

Fig. 0.6. Magnetoresistance of 2DHG in C-doped GaAs/AlGaAs quantum well. Clear even-

odd reversion of minima of ν = 3, 4, 5, 6, 7 is shown. 
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than that being reported for 2DHG in (100) single-interface heterostructure [134], where  

 presumably due to strong Rashba effect in triangular potential quantum %67 ~ ∆

confinement.  

Second, in high field regime, ୄܤ  1ܶ, SdH oscillations show clear reversion of 

even-odd minima pattern from filling factors ν = 3 to 9. In contrast to standard transport 

in GaAs/AlGaAs 2DEG, here odd minima are deeper than their adjacent even ones. A 

simple model based on spin-splitting Landau level diagram would suggest that the 

 

 

Fig. 0.7. Fourier Transform spectrum of SdH oscillations in magnetic field range of 0.3 to 3 

T, in which three peaks were shown. 
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Zeeman energy is comparable to cyclotron energy, as depicted in either (a) or (b) in Fig. 

4.8 with or without level crossing. To understand this reversion phenomenon, we 

measured the magnetoresistance under titled magnetic field with θ ranging from 0 to 86˚. 

SdH traces of selected tilted angles and the evolutions of minima of ν = 4, 5, 6, and 7 

with tilted angle are shown in Fig. 4.9 (a) and (b), respectively. From Fig.4.9 (b), we 

observe that for θ > 80°, the even minima of ν = 4, 6 become, respectively, deeper than 

the minima of ν = 5, 7. In particular, from Fig. 4.9 (a), the minimum of ν = 9 disappears 

 

 

Fig. 0.8. Diagrams of possible Landau level configurations causing reversion of even-odd 

minima in SdH trace. 
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at  ߠ ൌ 85°, indicating a coincidence of levels. The fact that such coincidence pattern 

occurs at ν = 9 requires, for 1ܶ ~ୄܤ, a level diagram as the one shown in Fig. 4.8 (b) in 

which the Zeeman splitting is large enough to cause Landau level crossing even at zero 

tilt. This Landau level crossing requires ଷ
ଶ

߱  ܤߤ݃  ߱, where ߤ ൌ ݁/2݉ is 

Bohr magneton. Simple calculation gives 3  כ݉݃  2. With ݉כ ؆ 0.4, we constrain 

7.2  ݃  5, which is close to g-factor of bulk hole (g = 7.2) [142], while is much bigger 

than previous results [142, 143] , in which ݃~2 for 15nm quantum well.  

It is known that the Landau level of 2DHG is hightly nonlinear with ୄܤ mainly due to 

the magnetic field dependence of the effective mass of 2DHG [144]. Moreover under 

tilted magnetic field, the presence of in-plane magnetic field צܤ is likely to increase the 

effective mass [145-147]. Despite these complications in 2DHG, for specific magnetic 

field at which coincidence occurs at ν = 9, we still have coincident conditions: 2߱ ൌ

 according to Landau level diagram Fig. 4.8 (b). It was reported that g-factor of ܤߤ݃

2DHG in GaAs/AlGaAs structure is strongly anisotropic [130, 131], and its in-plane 

component is close to zero [131], i.e., ݃ ൌ ݃ୄ so that in-plane magnetic field צܤ has no 

contribution to Zeeman splitting. Therefore the coincident condition become 2߱ ൌ

כ݉݃ Simple calculations give .ୄܤߤ݃ ൌ 4 which is larger than the initial value without 

in-plane magnetic field צܤ. Previous measurements [142, 143] showed that ݃ୄ is nearly 

independent on magnetic field. Assuming a constant ݃ୄ  in this QW, we can get the range 

of m* under high tilted magnetic field, 0.53 ൏ כ݉ ൏ 0.8, which is larger than its initial 

value, ݉כ ؆ 0.4. This increase in m* verifies the enhancement effect of in-plane 

magnetic field on the effective mass of 2DHG. 
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Fig. 0.9 (a) Magnetoresistance traces of selected tilted angles. Traces were shifted up vertically 

for clarity. Coincidences for minima of ν = 9 occur at tilted angle ߠ ൌ 85.0°. (b) Development 

of minima of Rxx of ν = 4, 5, 6, 7 with increasing tilted angle, in which odd minima increase 

while even ones decrease. 
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4.3. GR on 2DHG with triangular antidot lattice 

The sample is also cleaved from 2DHG wafer 10-21-03.1, having size of 3 mm × 5 

mm and following the same procedure of introducing an antidot lattice on a 2DEG 

sample. After an 80-µm-wide, 320-µm-long Hall bar was defined on the sample, a 

triangular antidot lattice, with period of a = 1500 nm and dot diameter of d = 300 nm, 

was patterned on the Hall bar. After the lithographical processing, the 2DHG has a hole 

density of p ≈ 2.1 × 1011 cm-2 and a mobility of µ ≈ 0.3 × 106 cm2/Vs at 300 mK. The 

hole density was calculated from period of SdH oscillations and mobility was calculated 

from zero field resistivity. Note that the introduction of antidot lattice reduced mobility 

more than twice. However, the transport mean free path corresponding to this mobility, 

݈ ൌ  where m* is hole effective mass and ߭ி is the Fermi velocity, is equal to ,݁/ߤி߭כ݉

2.4 μm, larger than the lattice period a.  

Our measurement was performed in He3 refrigerator equipped with an 12-T 

superconducting magnet. The magnetoresistance Rxx is measured with standard low 

frequency lock-in technique (frequency 23 Hz and excitation current 1 µA). A Rxx trace is 

shown in Fig.4.9, in which clear GR peaks were resolved.  Note that in the magnetic field 

regime of all these peaks, ߱߬௧ ൏  indicates that no full cyclotron orbit can be ߨ2

completed between two sequential scattering events.  

Experimental data show that the first three resolved GR peaks occurs at aspect ratio 

ܴ/ܽ = 0.58, 0.98 and 1.48, respectively. These aspect ratios are consistent with those of 

“even” peaks in Fig. 3.3, the GR oscillations on 2DEG patterned antidot lattice with same 

parameters. This consistency implies that runaway orbit mechanism is the dominant 

contribution to GR oscillations in 2DHG. And the fact that weaker “odd” GR peaks can’t 
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at 300 mK. The measurements were performed in an Oxford He3 refrigerator, equipped 

with a 12 T superconducting magnet, with base temperature of 300 mK. DC voltage can 

be applied to the gate to change density of 2DHG. For the photoresistance measurement, 

the mutual orientation of the waveguide, sample, and the magnetic field corresponds to 

Faraday configuration in which the excitation current flows perpendicularly to the 

microwave polarization. As the Cr-gate is not transparent for MW, MW irradiation has to 

hit on 2DHG from backside of sample. The magnetoresistance Rxx is measured with 

standard low frequency lock-in technique (frequency 23 Hz and excitation current 1 µA).  

Without applying gate voltage, MIRO were hardly resolved. After negative gate 

voltage was applied on the gate, resulting in an increase on hole density and decrease on 

mobility, MIRO could be observed with a heavily damped amplitude [17]. The 

magnetoresistance traces without and with MW irradiation at f = 26.5 GHz are shown in 

Fig.4.10. The parameters of hole density p ≈ 3.5 × 1011 cm-2 and mobility of µ ≈ 0.35 × 

106 cm2/Vs were achieved by applying -1 V gate voltage. From position of the first-order 

MIRO peak, a hole effective mass, ݉כ ؆ 0.26, can be deduced from formula (2.24) 

߱ெௐ ൌ ߱. Two features of MIRO on 2DHG shall be emphasized. 

First, the deduced hole effective mass, ݉כ ؆ 0.26, is much smaller than the value, 

כ݉ ؆ 0.4 measured by cyclotron resonance. The possible reason for the discrepancy is 

that under applied gate voltage, inversion symmetry of the square quantum well is totally 

broken, resulting in a larger zero field spin splitting. Thereby the difference between 

effective masses of heavy and light holes will increase. The light hole shall be 

responsible for the observed MIRO peak because of its higher mobility.  
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Chapter Five Imaging charge flow distribution 

5.1. Motivation and problems 

To understand the novel zero-resistance state [10, 11], Andreev et al suggested that 

the ZRS should directly result from absolute negative conductivity (ANC) whose 

instability would cause a development of local current density with specific magnitude ݆ 

circulating almost everywhere of the system except some small volume singular regions, 

such as domains, or vortices of current. The magnitude ݆ is determined by the condition 

that the component of electric field parallel to local current vanishes. Consider 

magnetoresistance measurement on a Hall bar geometry. Excitation current, I, passes 

along x direction, and longitudinal and Hall voltages are measured by Vx and Vy, 

respectively. Fig.5.1 shows the simplest possible pattern of singular regions: 

 

Fig. 0.1. Diagram of the simplest possible pattern of the current distribution: domain wall. The 

net current, I, is accommodated by a shift of the position of the domain wall by the distance d. 

(figure adapted from Ref.14) 
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two current domains separated by a domain wall, located at position d relative to the 

center of Hall bar. Thus the net current I can be obtained by ܫ ൌ 2݆݀. The condition of 

formation of current domains, ߩሺ݆
ଶሻ ൌ 0 with ߩthe longitudinal resistivity, naturally 

gives ௫ܸ ൌ 0 and Hall voltage is given by ௬ܸ ൌ ௬/2ܮுൣሺߩ െ ݀ሻ݆  ሺܮ௬/2  ݀ሻ݆൧ ൌ

െߩு݆ with ߩு the Hall resistivity, which is the classical Hall voltage. 

Based on the current domain picture, understanding of ZRS will involve two 

following tasks: (a) microscopic mechanism giving rise to ANC; (b) proof of existence of 

current domains. The knowledge of the current distribution of ZRS is the key to solve 

these two problems. And imaging of current distribution is thought to be the most 

straightforward method to achieve information of current distribution while is proven to 

be experimentally very challenging. In the following sections, an introduction of 

developing a method to image current distribution by using low temperature (0.3 K) 

scanning Hall probe microscopy will be presented.    

5.2. Algorithm of rebuilding current distribution from magnetic field 

So far, there is no direct method to measure current distribution. One feasible method 

is to measure the magnetic field produced by the current density and recover the current 

distribution from the measured magnetic field. In three dimensional case, there is no 

unique solution for problem of determination of current distribution from measured 

magnetic field. Fortunately, if current is confined to a two dimensional system, the 

problem can be solved uniquely. B. J. Roth et al [148] developed a mathematical 

algorithm based on the Fourier transform technique to obtain the 2D current distribution 

from measured perpendicular component of the magnetic field.  
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Assume that a static current density J(r) lies entirely in a very thin sheet of thickness 

d lying in the x-y plane and the magnetic field produced by the current density is B(r). 

The thickness d shall be small enough so that we can treat the current distribution as two 

dimensional. As no current sink and source exist in the region, the current density shall 

obey the equation of continuity: 

 · ሻ࢘ሺࡶ ൌ 0                                                                      ሺ5.1ሻ 

And the magnetic field produced by the current density is given by: 

ሻ࢘ሺ ൌ
ߤ

ߨ4 න
ᇱሻ࢘ሺࡶ ൈ ሺ࢘ െ ᇱሻ࢘

࢘| െ ଷ|′࢘ ݀ଷ࢘′                                          ሺ5.2ሻ 

Then the z component of the magnetic field is given by: 

,ݔ௭ሺܤ ,ݕ ሻݖ ൌ
݀ߤ
ߨ4 න න

,ᇱݔ௫ሺܬ ݕᇱሻݕ െ ,ᇱݔ௬ሺܬ ݔᇱሻݕ
ሾሺݔ െ ᇱሻଶݔ  ሺݕ െ ᇱሻଶݕ  ሺݖ െ Ԣሻଶሿଷ/ଶݖ ᇱ      ሺ5.3ሻݕᇱ݀ݔ݀

ାஶ

ିஶ

ାஶ

ିஶ
 

With the convolution theorem [149], we can get the Fourier transform of Eq. (5.1) and 

Eq. (5.3) as following: 

݇௫݆௬൫݇௫, ݇௬൯  ݇௬݆௫൫݇௫, ݇௬൯ ൌ 0                                          ሺ5.4ሻ 

ܾ௭൫݇௫, ݇௬, ൯ݖ ൌ െ ൬
݀ߤ

2 ൰ ݁
ି௭ටೣ

మା
మ

·
݇௬݆௫൫݇௫, ݇௬൯ െ ݇௫݆௬൫݇௫, ݇௬൯

ඥ݇௫
ଶ  ݇௬

ଶ
               ሺ5.5ሻ 

where ݇௫, ݇௬ are x, y components of wave vector and ݆௫, ݆௬, ܾ௭ are the Fourier transforms 

of Jx, Jy and Bz respectively. Theoretically,  ݆௫, ݆௬ can be solved uniquely from Eqs. (5.4) 

and (5.5),  and then Jx, Jy  can be obtained by performing inverted Fourier transformation 

of   ݆௫, ݆௬.  
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To apply this mathematical algorithm to numerical calculation, we did not use the 

infinite sheet. Instead we considered a L x L square area in which there are N sampled 

points in each x, y direction. Thereby the distance between adjacent points in real space is 

Δݔ ൌ Δݕ ൌ and in k-space is Δ݇௫  ܰ/ܮ ൌ Δ݇௬ ൌ  ሻ. The one dimensionalݔሺܰΔ/ߨ2

discrete form of Fourier Transformation is given by: 

ܾ௭ሺ݇ሻ ൌ ሻሿݔ௭ሺܤሾܶܨܨ ൌ  ሻ݁ିଶగݔ௭ሺܤ
ே ሺିଵሻሺିଵሻ                               ሺ5.6ሻ

ே

ୀଵ

 

ሻݔ௭ሺܤ ൌ ሾܾ௭ሺ݇ሻሿܶܨܨ݅ ൌ
1
ܰ  ܾ௭ሺ݇ሻ݁

ଶగ
ே ሺିଵሻሺିଵሻ                          ሺ5.7ሻ

ே

ୀଵ

 

where FFT and iFFT are Fast Fourier and inverted Fast Fourier Transformations. Choose 

N as an even number and xn, km as following forms: 

ݔ ൌ ൬݊ െ 1 െ
ܰ
2൰ · Δݔ                                                       ሺ5.8ሻ 

݇ ൌ ൬݉ െ 1 െ
ܰ
2൰ · ∆݇                                                      ሺ5.9ሻ 

Thus summation can be used as an approximation of the integral of the Fourier 

Transform: 

ܾ௭ሺ݇ሻ ൌ න ݔሻ݁௫݀ݔ௭ሺܤ ൌ  ሻ݁·௫ݔ௭ሺܤ · ݔ∆
ே

ୀଵ

                            ሺ5.10ሻ 

Making use of Eqs. (5.8), (5.9), we can get, 
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ܾ௭ሺ݇ሻ ൌ ሺᇲିଵሻగି݁ܮ 1
ܰ  ሻ݁ݔ௭ሺܤ

ଶగ
ே ൫ᇲିଵ൯ሺିଵሻ ൌ ሺᇲିଵሻగି݁ܮ · ௭ሻܤሺܶܨܨ݅

ே

ୀଵ

   ሺ5.11ሻ 

where m’=m-N/2. With the same manipulations, we can get J(x) from j(k). 

ሻݔሺܬ ൌ න ݆ሺ݇ሻ݁ି௫݀݇ ൌ  ݆ሺ݇ሻ݁ି·௫ · ∆݇ ൌ
1
ܮ ݁ሺିଵሻగܶܨܨሺ݆ሻ

ே

ୀଵ

      ሺ5.12ሻ 

Eqs. (5.11) and (5.12) are the basic formula used in programming of simulation. 

The flow chart of the simulation is following. MatLab codes of the program can be found 

in Appendix A5, A6 and A7. 

 

 

 

 

 

 

5.3. Simulation results 

1). Create a 2D current distribution, shown in Fig.5.2.  

This is 16 um × 16 um square area with 128 sampled points in each x, y direction, in 

which there are ring currents with ring diameter 1 um and arbitrary amplitudes satisfying 

the continuity condition. 

,ݔ௫ሺܬ ,ሻݕ ,ݔ௬ሺܬ  ሻݕ
Generate current pattern Biot and Savart law 

,ݔ௭ሺܤ  ሻݕ

ܾ௭൫݇௫, ݇௬൯ 
,ݔ௫ሺܬ ,ሻݕ ,ݔ௬ሺܬ  ሻݕ

Calculated ݆௫൫݇௫, ݇௬൯ 
 ݆௫൫݇௫, ݇௬൯ 

iFFT

Eq.(5.12)

FFT Eq.(5.11)
Eq.(5.3)

Eq.(5.5)

Eq.(5.4)
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Fig. 0.2 Original current distribution. 

2). Calculate the perpendicular component, Bz, of magnetic field. 

The magnetic field is produced by this current density at z = 100, 200, 300 nm by 

Biot-Savart law, Eq. (5.3), and then calculate the current distribution from the above Bz 

data with the mathematical algorithm. The results are shown in Fig.5.2 and 5.3. From the 

simulation results, we can see that the algorithm is working and the distance z is a very 

important parameter for the simulation. In order to recover the original current 

distribution J(x,y), the scanning range has to be at least 50 times bigger than z. The bigger 

is the scanning area, the better will the current distribution be recovered. 
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Fig. 0.3. Mappings of calculated Bz of z = 100, 200 and 300 nm. 
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Fig. 0.4. Mappings of Calculated current density J of z = 100, 200 and 300 nm. 
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5.4. Estimate amplitude of magnetic field produced by cyclotron orbits 

In order to address appropriate technique to measure the magnetic field produced by 

current, we need to estimate the magnitude of the magnetic field. Assume that current I is 

going through a ring with radius R. Then the magnetic field at ring center is given by: 

ܤ ൌ
ܫ ߤ
 ܴߨ2

A 2DEG under external magnetic field, Bex, the total number of occupied Landau levels 

can be estimated by ܰ ൎ  ி/߱. Thus the portion of electron density at the topܧ

occupied Landau is: 

∆݊௦ ൌ
݊ଶ

ܰ
ൌ

݊ଶ · ߱

ிܧ
 

At geometric resonance, the cyclotron orbits, with radius rc, of electrons are pinned 

around the antidots. Thus the current caused by one electron is  ܫ ൌ ݁ ݂ ൌ ݁ ߱/2ߨ and   

magnetic field at the center of the orbit produced by the electron is: 

ܤ ൌ
ܫ ߤ

ݎߨ2
 

We suppose that all electrons on an area of 2rc × 2rc around an antidot will form 

cyclotron orbits with same radius centered at this antidot and all electrons in the top 

occupied Landau level are involved in forming cyclotron orbits. So the number of 

electrons circling around one antidot is given by: 

ܰ ൌ ∆݊௦ · ሺ2ݎሻଶ 

Therefore the total magnetic field at the center of these orbits is N times of Be. On our 

2DEG GaAs sample with density ݊ଶ ؆ 2.8 ൈ 10ଵଵcmିଶ, the Fermi level ܧி ؆ 10meV 
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and the first geometric resonance peak occurs at Bex = 0.1 T with orbit radius of 1 μm, 

then the current produced by single electron is: 

ܫ ൌ ݁ ݂ ൎ  ܣ7݊

The number of electrons circling one antidot is ܰ ൎ 200. Hence the magnetic field at the 

orbit center: ܤ ൎ 3mGauss.  

When the magnetic field on the orbit axis, but away from the orbit surface with 

distance z, then the magnetic field is given by: 

௭ܤ ൌ
ߤ

2 ·
ݎ

ଶܫ
ሺݖଶ  ݎ

ଶሻଷ/ଶ 

Therefore, the perpendicular component of magnetic field we need to measure shall be no 

larger than 3 mGuass. 
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5.5. Scanning Hall Probe Microscope 

To meet out requirements of measuring perpendicular component of magnetic field, 

low temperature Scanning Hall Probe Microscope (SHPM) which was developed by 

Chang, et al [150] is the most promising technique. The Scanning Hall Probe Microscope 

works based on Hall effect in which a Hall voltage, VH, cross to excitation current, I, will 

be produced by a magnetic field, B, perpendicular to electron system,  as shown in 

Fig.5.5.  And VH will be determined by  

ுܸ ൌ ܴு
ܫ
݀  ሺ5.13ሻ    ܤ

where RH  is Hall coefficient, an intrinsic property 

of the electron system. Thereby, magnetic field can 

be measured by measured Hall voltage.  There are 

two main advantages of Hall Probe technique. 

a). Unlike Magnetic Force Microscope responding 

to total magnetic field, the SHPM only 

responds to the component of magnetic field 

perpendicular to the probe. This is a perfect 

match to our requirements. 

b). SHPM has no saturation in high magnetic field, which is important for measurement 

performed in existence of external magnetic field. 

The main shortage of SHPM is difficult to fabricate a small size Hall sensor with high 

sensitivity. In a small Hall sensor, mixture between longitudinal voltage and Hall voltage 

become serious so that magnetic field sensitivity will be strongly limited.  

 

Fig. 0.3. Diagram of Hall effect. 
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A typical structure of SHPM is shown in Fig.5.6. Photos of a real SHPM and Hall probe 

are shown in Fig.5.7 and 5.8. The SHPM was bought from Nanomagnetics Instruments 

and has following features: 

 Scanning Tunneling Microscope (STM) positioning technique to control distance 

between Hall probe and sample surface. This STM tip is fabricated near the Hall 

probe section, as shown in Fig. 5.8. This STM positioning mechanism requires the 

sample surface shall be conductive. 

 Use piezoelectric tube (PZT) to control scanning of Hall probe in XYZ directions. 

There are two separated parts working for step-moving: a big piezoelectric tube for Z 

direction, and a stack of two Attocube piezoelectric positioners for XY directions. As 

shown in Fig. 5.7, a slider is sitting around and can slide along the slider glass tube. 

The big PZT can make the slider move more than 10 mm on the slider glass tube and 

 

Fig. 0.6. Schematic diagram of Scanning Hall Probe Microscope. (figure from Ref. 151) 
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has capability of moving mass up to 100 grams. The Attocube positioners are 

mounted on the slider and sample holder is mounted on the top positioner, so 

movement of slider results in sample moving in Z direction. And the positioners can 

provide up to 4 mm travel length in X and Y directions and have step size ranging 

from 3 nm to 50 nm, depending on applied voltage, at 4.2K. 

 Have submicron spatial resolution. This spatial resolution is totally determined by 

size of Hall probe section. For our Hall probe sensors, the section has size of 1µm ൈ

1µm, as shown in Fig.5.8. 

 Achieve 16µm ൈ 16µm scanning range at low temperature, down to 1 K. 

 

 

Fig. 0.4. Photos of our SHPM. The slider is sitting around and can move along the slider glass 

tube. A stack of two positioners is mounted on the slider and sample holder will be mounted 

on the top positioner. 
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Two images of magnetic field of a piece of hard disc at T = 300 K and 1 K are shown 

in Fig.5.9. The curves below images are magnetic field profiles along the lines on images. 

The noise on profiles indicates that the magnetic field resolution is about 1 G. To 

calibrate the sensitivity of Hall sensors, we made a 10 mm long solenoid with diameter of 

8.5 mm and put the Hall sensor at the center of the solenoid. If current of 1 A passes 

through the solenoid, magnetic field at the center will be 25.5 G. With this calibration 

setup, we can measure the sensitivity of Hall sensor around 200 mG at T ~ 1 K. After 

employing lockin technique, the resolution could be improved to about 50 mG. This 

 

Fig. 0.8. Photos of Hall probe. In this Hall probe, the section of Hall probe has size of 1µm ൈ

1µm, and the gold STM tip is used for positioning.  
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sensitivity is still much lower than our requirement, about 1 mG. Therefore, further 

improvement on Hall sensor sensitivity is essential for success of imaging of current 

distribution of zero-resistance-state. 

 

 

 

   

Fig. 0.5. SHPM images of magnetic field of a piece of hard disc at T = 300 K and 1 K, 

respectively. The curves below images are magnetic field profiles along the lines on images. 
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Chapter Six Conclusion 

In this thesis, we reported our experimental studies on the microwave photoresistance 

in a high-mobility 2DEG modulated by a 2D triangular potential. The geometric 

resonance observed in the sample is remarkably different from previous systems of lower 

mobility. We observed microwave-induced resistance oscillations and magnetoplasmon 

resonance that are characteristically similar to those of unpatterned 2DEG. Our data 

shows that MIRO, MP, and geometric resonance are essentially decoupled from each 

other in these experiments. Ultimately, one would like to pursue the experimental regime 

where periodical modulation would lead to characteristically new behavior in the MIRO 

and ZRS. Along this line, a clean 2D electron system consisting of a short modulation 

period approaching magnetic length would offer exciting opportunities. Moreover, the 

issue concerning scattering parameters and their influences in the microwave 

photoresistance remains open for experimental as well as theoretical work. 

 To characterize transport properties of 2DHG in C-doped (100) GaAs/Al0.4Ga0.6As 

square QW, we measured the effective mass of the 2DHG with MW CR technique. Only 

one effective mass, ݉כ ؆ 0.4, was detected due to small zero-field spin splitting, which 

was confirmed in Fourier transformation spectrum of beating pattern in SdH oscillations. 

Values of transport scattering time, τtr and cyclotron relaxation time, τCR prove the 

cleanness of this 2DHG QW from modulation doping. Magnetoresistance measurements 

under tilted magnetic field indicate that at B ~ 1 T, the g-factor of 2DHG is large enough 

to cause Landau level crossing, and by increasing the total magnetic field, the product 

gm* increases. This mainly results from an increase of m*. Magnetotransport 

measurements on a gated 2DHG indicates that due to screening effect of doping layer, 
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front gate doesn’t work reliably and the density can only be changed without shift back 

beyond a threshold gate voltage, about -1.0 V. Magnetotransport measurements on 2DHG 

modulated with 2D triangular antidot lattice shows strong geometric resonance 

oscillations whose pattern is consistent with that in high mobility 2DEG. MW 

photoresistance measurements on a gated 2DHG shows microwave induced resistance 

oscillations with heavy magnetic field damping on amplitudes and is much weaker than 

that in 2DEG having comparable transport scattering time. This finding implies that the 

complicated band structure of 2DHG might have suppression effect on MIRO. And the 

deduced effective mass from MIRO peak indicates that zero field spin splitting increases 

under applied gate voltage. 

In order to explore the existence of domain of current density in of zero-resistance 

state, we develop a technique to image current distribution. The technique is consisted of 

two parts: an algorithm to calculate current distribution from measured magnetic field 

and low temperature Scanning Hall Probe Microscope to measure the magnetic field. So 

far, the only obstacle is limit of sensitivity of Hall sensor. From our estimation, the 

magnetic field needed to be measured has order of 1 mG, while current Hall sensor only 

achieves sensitivity about 50 mG. Hence success of current distribution imaging totally 

relies on the future improvement on the sensitivity of Hall sensor.  
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Appendix 

A1. Recipe for optical lithography 

Cleave a 3 mm × 5 mm sample piece from a GaAs/AlGaAs wafer, and follow steps 

shown below to define pattern on the sample.  

1. Transfer mask pattern to photoresist on sample surface by lithography 

1.1, Clean sample surface. Rinse the surface of sample in following solvents in 

sequence:  Acetone → Methanol → DI  water,  5 minutes in each. In rest of 

recipe, the same procedure will be used in sample cleaning. 

1.2, Spin coat the sample with S1813 photoresist 6000 rpm for 40 seconds.  Thickness 

of photoresist film will be around 15,000 Հ.  

 

Fig. A.1 Thickness vs spin rate for photoresist 1813. (Figure adapted from website 

http://inside.mines.edu/Academic/courses/physics/phgn435) 
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1.3, Soft bake the sample at 95°C for 60 seconds 

1.4, Do exposure 

Note: it is extremely important to choose right exposure time. If the photoresist is 

under exposure, it will remain on the exposed area after develop. While if the 

photoresist is over exposure, the protected area will be exposed by diffraction of 

UV light so that we can not get a sharp pattern. As the diffraction happens all the 

time, we shall choose the shortest exposure possible. The optimal exposure for 

S1813 is around 150 mJ/cm2 ,  and exposure time can be calculated from formula:  

Exposure (mJ/cm2) = Power output level (mW/cm2) × Exposure time (sec) 

1.5, Immerse the sample in developer 321 for 30 seconds 

Note: Remember, the developer also removes the unexposed photoresist but with 

much lower rate, so developing time shall be kept as short as possible. After 

developing, some windows contacts are opened on photoresist for making 

contacts. 

2. Do etching for 2.5 minutes with etchant H3PO4 : H2O2 : H2O = 1 : 1 : 38, whose 

etching rate on GaAs is 1200 Հ /min, so the etching depth will be around 3000 Հ.  

A2. Recipe of making contact on n-GaAs 

1. Make contact without involving thin film deposition. 

1.1. Transfer contact alloy to sample surface by solder iron tip. 

1.1.1. Cleave a piece of 2DEG sample with proper size. 

1.1.2. Heat solder iron tip to temperature 350 ˚C. 
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1.1.3. Melt metals Indium (In) and Tin (Sn), and mix them to form alloy with 

solder iron tip. 

1.1.4. Scratch the sample surface a little bit with diamond tip and put InSn alloy 

to the scratched area with solder iron tip. 

1.2.  Anneal contacts alloy on thermal station. 

1.2.1. Set thermal station temperature T1 = 450 ˚C and T2 = 460 ˚C. 

1.2.2. Flush forming gas (85% N2 and 15% H2) for 10 minute keeping flow 

meter reading 1.0. 

1.2.3. Turn on heater for 20 minutes. It takes about 8.5 minutes to reach 450 ˚C. 

1.2.4. Turn off heater and wait for cooling down with keeping forming gas 

flowing. 

2. Make contacts used thin film deposition. 

2.1. Use procedure (A1.1) to transfer windows on sample surface.  

2.2. Rinse sample in dilute HCL for 10 seconds, and clean sample with DI water. 

2.3. Deposit metal alloy film on the sample surface by e-beam evaporator. In our 

recipe, Germanium (Ge), Palladium (Pd) and Gold (Au) are used to make contact.  

Deposit Ge/Pd/Au films on sample in sequence with thickness 430/300/870 Հ  at 

deposit rate of 1.5/1.5/2.5 Հ respectively [152]. The thicknesses of Ge and Au 

films ensure ratio of Ge:Au = 12:88 in weight to keep the eutectic composition. 

2.4. Do lift-off. Immerse sample in Acetone and ultrasonic for 10 seconds so that all 

the metal films except for those on contacts windows are removed. 

2.5. Clean the sample with step (A1.1.1), and wait for sample dry.  
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Two different annealing processes can be used here. One is to use thermal station to 

anneal alloy. The other one is to use Rapid Thermal Annealing (RTA) machine to 

anneal alloy. Usually contacts annealed with RTA have better quality. 

2.6. Anneal contacts alloy on thermal station. 

2.6.1. Set thermal station temperature T1 = 450 ˚C and T2 = 460 ˚C. 

2.6.2. Flush forming gas (85% N2 and 15% H2) for 10 minute, keeping flow 

meter reading 1.0. 

2.6.3. Turn on heater with 0.5 flowing meter reading. 

2.6.4. After temperature reach 450 ˚C, and keep it for 2 minutes. 

2.6.5. Turn off heater and cool down sample with 1.5 flowing meter reading 

2.7. Anneal alloy with Rapid Thermal Annealing (RTA) machine. 

2.7.1. Pump vacuum for 40 seconds. 

2.7.2. Flush forming gas at 200 sccm for 30 seconds with vacuum valve closed, 

and keep form gas flowing in following steps. 

Note: if N2, instead of forming gas, is used, 500 sccm flowing rate shall be used. 

Lower N2 flowing rate will result in bad effect on sample surface so that 

etching process will not work. 

2.7.3. Increase temperature to 450 ˚C in 45 seconds. 

2.7.4. Keep at 450 for 2 minutes. 

2.7.5. Decrease temperate to 20 ˚C in 60 seconds. 

2.7.6. Shut down forming gas and pump vacuum for 60 seconds by open vacuum 

valve. 

2.7.7. Flush N2 at 100 sccm for 60 seconds to cool down sample. 
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2.7.8. Pump vacuum. 

2.7.9. Open purge valve to let air in. 

A3. Recipe of making contact on p-GaAs (2DHG)  

1. Transfer contact alloy to sample surface by solder iron tip. 

1.1. Cleave a piece of 2DHG sample with proper size. 

1.2. Heat solder iron tip to temperature 475 ˚C. 

1.3. Melt metals Indium (In) and Zinc (Zn), and mix them to form alloy with solder 

iron tip. 

1.4. Scratch the sample surface a little bit with diamond tip and put InZn alloy to the 

scratched area with solder iron tip. 

2. Anneal contacts alloy on thermal station. 

2.1.  Set thermal station temperature T1 = 450 ˚C and T2 = 460 ˚C. 

2.2. Flush forming gas (85% N2 and 15% H2) for 10 minute keeping flow meter 

reading 1.0. 

2.3. Turn on heater for 20 minutes. It takes about 8.5 minutes to reach 450 ˚C. 

2.4. Turn off heater and wait for cooling down with keeping forming gas flowing. 
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A4. Recipe of introducing antidot lattice to sample surface 

1. Use procedure (A2.2) to make contacts by thin film deposition. 

2. Use procedure (A1) to define Hall bar pattern on sample surface. 

3. Introduce antidot lattice to sample with e-beam lithography. 

3.1. Clean sample surface. 

3.2. Spin coating sample with 950K A2 PMMA at 3000 rpm for 40 seconds. At this 

spin rate, the thickness of PMMA film is around 100 nm. 

3.3. Bake sample at 160 Ԩ for 2 hours in oven. 

3.4. Write antidot pattern on PMMA with SEM (JEOL 6500). For e-beam lithography, 

SEM shall work at high voltage, 30 kV, with smallest aperture and 7 mm work 

distance. The exposure dose shall be 400 ~ 600 µC/cmଶ. 

3.5. Do development. Immerse sample in developer (MIBK: IPA = 1: 3) for 60 

seconds, then IPA for 20 seconds. 

 3.6. Do Reactive Ion Etching (Oxford PlasmalabSystem 90 RIE) for 30 seconds with 

following parameters:  

 

 

 

Note: Wet chemical etching can be used here, but the diameter of antidot will be 
enlarged by wet etching. 

BCl3 85 sccm   

Cl2 50 sccm 

Pressure 45mT 

Power 150W 

Temperature 20 ˚C 
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3.7. Clean sample surface. 

A5. MatLab codes for building ring currents. 

clear 
warning off MATLAB:divideByZero; 
L=input('Area size (um) L= [6]'); 
if isempty(L) 
    L=6; 
end 
N=input('Point number N= [64]'); 
if isempty(N) 
    N=64; 
end 
r=input('Current orbit radius (um) r= [0.5]'); 
if isempty(r) 
    r=0.5; 
end 
d=input('Distance between current orbit (um) d= [2]'); 
if isempty(d) 
    d=2; 
end 
dx=L/N; 
J=zeros(N); 
Jx=J; 
Jy=J; 
pn=fix(L/d)+1; 
for p=1:pn 
    for q=1:pn 
        x0=(p-1+rand(1)/2)*d; 
        y0=(q-1+rand(1)/2)*d; 
        for x=1:N 
            for y=1:N 
                x1=x*dx; 
                y1=y*dx; 
                dr=abs(sqrt((x1-x0)^2+(y1-y0)^2)-r);                 
                if dr<=3*L/N 
                    J(x,y)=J(x,y)+exp(-10*dr); 
                    if x1-x0~=0 
                        Jx(x,y)=Jx(x,y)+sign(x1-x0)*J(x,y)*cos(atan((y1-y0)/(x1-x0))); 
                        Jy(x,y)=Jy(x,y)-sign(x1-x0)*J(x,y)*sin(atan((y1-y0)/(x1-x0))); 
                    else 
                        Jy(x,y)=Jy(x,y)-sign(y1-y0)*J(x,y); 
                    end 
                end 
            end 
        end 
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    end 
end 
filen=input('Please input filename to save data: [Jd0]','s'); 
if isempty(filen) 
    filen='Jd0'; 
end 
save(filen,'N','L','J','Jx','Jy'); 
clear d dr dx filen p pn q r x x0 x1 y y0 y1; 
%figure('name','Jx') 
%surface(Jx) 
%figure('name','Jy') 
%surface(Jy) 
figure('name','J') 
surface(real(J)) 

 

A6. MatLab codes for calculating z component of magnetic field. 

clear 
filen=input('Please input filename to load:','s'); 
if isempty(filen) 
    filen='Jd1'; 
end 
load(filen); 
clear filen; 
%N=size(Jx,1) 
d=1*10^(-9); 
z=0.5*10^(-6); 
c0=i*2*pi*10^(-7)*d; 
dx=L/N; 
dk=2*pi/N/dx; 
k=ones(N,1); 
%x=ones(N,1); 
bz=zeros(N); 
for m=1:N 
    k(m)=-pi/dx+(m-1)*dk; 
    %k(m)=m*dk; 
    %x(m)=-N*dx/2+(m-1)*dx; 
end 
jx=fft2(Jx); 
jy=fft2(Jy); 
for m=1:N 
    for n=1:N 
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        if m<=N/2 
            u=m+N/2; 
        else 
            u=m-N/2; 
        end 
        if n<=N/2 
            v=n+N/2; 
        else 
            v=n-N/2; 
        end 
        kt=sqrt(k(u)*k(u)+k(v)*k(v)); 
        if kt==0 
            bz(u,v)=-exp(-i*pi*(m+n-2))*(jx(m,n)-jy(m,n)); 
        else 
            bz(u,v)=-exp(-kt*z)*exp(-i*pi*(m+n-2))*(k(u)*jx(m,n)-k(v)*jy(m,n))/kt; 
            %bz(u,v)=exp(-kt*z)*exp(-i*2*pi*(u+v)/N)*kt/k(u)*jx(m,n); 
            %bz(u,v)=-exp(-kt*z)*exp(-i*2*pi*(u+v)/N)*kt/k(u)*jy(m,n); 
        end 
    end 
end 
clear jx jy; 
bz=c0*bz*dx*dx; 
 
Bzt=ifft2(bz); 
Bz=Bzt; 
for m=1:N 
    for n=1:N 
        if m<=N/2 
            u=m+N/2; 
        else 
            u=m-N/2; 
        end 
        if n<=N/2 
            v=n+N/2; 
        else 
            v=n-N/2; 
        end 
        Bz(u,v)=exp(i*pi*(m+n-2))*Bzt(m,n); 
    end 
end 
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clear jy bz Bzt m n u v; 
 
filen=input('Please input filename to save variables: [Bz0]','s'); 
if isempty(filen) 
    filen='Bz0'; 
end 
save(filen,'Bz','J','Jx','Jy','L','N'); 
 
clear dk dx k kt L N c0 d z filen; 
 
figure('name','Bz') 

surface(real(Bz))  
 

A7. MatLab codes for recovering ring currents by Fast Fourier Transform 

technique. 

clear 
filen=input('Please input filename to load: [Bz0]','s'); 
if isempty(filen) 
    filen='Bz0'; 
end 
load(filen); 
clear filen; 
 
%N=size(Bz,1) 
d=1*10^(-9); 
z=0.5*10^(-6); 
c0=i*2*pi*10^(-7)*d; 
dx=L/N; 
dk=2*pi/N/dx; 
k=ones(N,1); 
%x=ones(N,1); 
bz=zeros(N); 
for m=1:N 
    k(m)=-pi/dx+(m-1)*dk; 
    %x(m)=-N*dx/2+(m-1)*dx; 
end 
 
bz=fft2(Bz); 
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jx=bz; 
jy=bz; 
for m=1:N 
    for n=1:N 
        if m<=N/2 
            u=m+N/2; 
        else 
            u=m-N/2; 
        end 
        if n<=N/2 
            v=n+N/2; 
        else 
            v=n-N/2; 
        end 
        kt=sqrt(k(u)*k(u)+k(v)*k(v)); 
        if kt==0 
            jx(u,v)=-exp(-i*(m+n-2)*pi)*bz(m,n); 
            jy(u,v)=exp(-i*(m+n-2)*pi)*bz(m,n); 
        else 
            jx(u,v)=-exp(kt*z)*k(u)/kt*exp(-i*(m+n-2)*pi)*bz(m,n); 
            jy(u,v)=exp(kt*z)*k(v)/kt*exp(-i*(m+n-2)*pi)*bz(m,n); 
        end 
    end 
end 
clear bz; 
jx=jx/c0; 
jy=jy/c0; 
 
Jxct=ifft2(jx); 
Jyct=ifft2(jy); 
clear jx jy; 
Jxc=Jxct; 
Jyc=Jyct; 
for m=1:N 
    for n=1:N 
        if m<=N/2 
            u=m+N/2; 
        else 
            u=m-N/2; 
        end 
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        if n<=N/2 
            v=n+N/2; 
        else 
            v=n-N/2; 
        end 
        Jxc(u,v)=exp(i*(m+n-2)*pi)*Jxct(m,n); 
        Jyc(u,v)=exp(i*(m+n-2)*pi)*Jyct(m,n); 
    end 
end 
clear Jxct Jyct; 
Jxc=real(Jxc); 
Jyc=real(Jyc); 
Jc=zeros(N); 
Jc=(Jxc.*Jxc+Jyc.*Jyc).^(0.5); 
 
filen=input('Please input filename to save current J: [J0]','s'); 
if isempty(filen) 
    filen='J0'; 
end 
save(filen,'Bz','J','Jx','Jy','L','N'); 
 
clear dk dx k kt L N c0 d z filen m n u v; 
 
figure('name','Jx') 
surface(Jx) 
figure('name','Jy') 
surface(Jy) 
figure('name','J') 
surface(J) 
figure('name','Jxc') 
surface(Jxc) 
figure('name','Jyc') 
surface(Jyc) 
figure('name','Jc') 
surface(Jc) 
 


